A famous saying (due toHerriot)definescultureas "what remainswhen everythingisforgotten ". One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone- variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics . Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc- tions,withapplicationsto partialdifferentialequations ,variationalinequal- ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.
"synopsis" may belong to another edition of this title.
£ 14.92 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540418061_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Invited Papers.- Minimization of the Sum of Several Linear Fractional Functions.- Discrete Higher Order Convex Functions and their Applications.- Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems.- Contributed Papers.- The Steiner Ratio of . Seller Inventory # 4889454
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. 428 pp. Englisch. Seller Inventory # 9783540418061
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 915850-n
Quantity: 15 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. Seller Inventory # 9783540418061
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 915850
Quantity: 15 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. This volume contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in this interdisciplinary field. Editor(s): Hadjisavvas, Nicolas; Martinez-Legaz, Juan E.; Penot, Jean-Paul. Series: Lecture Notes in Economics and Mathematical Systems. Num Pages: 419 pages, 1 black & white illustrations, 1 colour illustrations, biography. BIC Classification: PBK; PBU. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 22. Weight in Grams: 597. . 2001. Paperback. . . . . Seller Inventory # V9783540418061
Quantity: 15 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch. Seller Inventory # 9783540418061
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 428. Seller Inventory # 263075921
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 428 Illus. Seller Inventory # 5853326
Quantity: 4 available