Geometry and Probability in Banach Spaces
"synopsis" may belong to another edition of this title.
Seller: HPB Inc., Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_461802390
Seller: Jay W. Nelson, Bookseller, IOBA, Austin, MN, U.S.A.
No Binding. Condition: Near Fine. No Jacket. Seller Inventory # 044878
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020159074
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783540106913
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540106913_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783540106913
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Application: Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+ )-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity 'trees' and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem). 120 pp. Englisch. Seller Inventory # 9783540106913
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem. Seller Inventory # 4881052
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Application: Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+ )-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity 'trees' and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem). 120 pp. Englisch. Seller Inventory # 9783540106913
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Application: Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+ )-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity 'trees' and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem). Seller Inventory # 9783540106913