Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 behandelt die Familie der Clusteranalysen. Darin vorgestellt werden u.a. hierarchische, partitionierende, sowie das TwoStep Cluster-Verfahren. Kapitel 2 behandelt die Gruppe der Faktorenanalysen. Zuerst wird in das Grundprinzip und dann in die Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) eingeführt. Kapitel 3 stellt die Diskriminanzanalyse vor. Weitere Kapitel stellen Möglichkeiten des Clusterns und Segmentieren mit CLEMENTINE vor, u.a. Entscheidungsbäume und ausgewählte Cluster-Knoten.
"synopsis" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020144137
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. 1st. Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi²-Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl. ihrer Bias (z.B. Ausreißer, Chaining) erläutert. Anhand zahlreicher Beispiele wird erläutert, wie Intervalldaten, Häufigkeiten, Kategorialdaten, sowie gemischte Daten geclustert werden. Bei der partitionierenden Clusterzentrenanalyse (k-means, QUICK CLUSTER) lernen Sie Teststatistiken zur Bestimmung der optimalen Clusterzahl kennen (z.B. Eta², F-max; nicht im original SPSS Leistungsumfang enthalten), sowie die ausgewählte Clusterlösung auf Interpretierbarkeit, Stabilität und Validität zu prüfen. Bei der Two-Step Clusteranalyse (TWOSTEP CLUSTER) lernen Sie die Clusterung von gemischten Daten anhand eines Scoring-Algorithmus kennen Darüber hinaus lernen Sie Kriterien für die Beurteilung einer guten Clusterlösung kennen, wie auch alternative grafische und logische Ansätze zur Clusterung von auch Daten im String-Format. Kapitel 2 führt ein in die Gruppe der Faktorenanalyse mit SPSS. Die Faktorenanalyse (factor analysis, FA) ist ein Sammelbegriff für verschiedene Verfahren, die es ermöglichen, aus einer großen Zahl von Variablen eine möglichst geringe Anzahl von (nicht beobachteten) 'Faktoren' zu erhalten ('extrahieren'). Die Faktorenanalyse geht nicht von unabhängigen oder abhängigen Variablen aus, sondern behandelt alle Analysevariablen unabhängig von einem Kausalitätsstatus. Dieser Kurs führt in das Grundprinzip und Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) und ihre Funktion. Vorgestellt werden Kriterien zur Bestimmung, Interpretation und Benennung der Faktoren. Dieser Kurs stellt ausschließlich die Variante der explorativen Faktorenanalyse (EFA) vor (R-Typ). Abschliessend werden eine Faktorenanalyse für Fälle (Q-Typ Faktorenanalyse vorgestellt, sowie eine Matrix-Variante, die dann zum Einsatz kommen kann, wenn die korrelationsanalytischen Voraussetzungen der Faktorenanalyse nicht erfüllt sind. Die Überprüfung der Voraussetzungen und die Interpretation der Statistiken werden an zahlreichen Beispielen geübt. Kapitel 3 stellt die Diskriminanzanalyse (DA, syn.: DFA, Diskriminanzfunktionsanalyse) vor. Das zentrale Ziel dieses Ansatzes ist, die beste Trennung (Diskriminanz) zwischen den Zugehörigkeiten einer abhängigen Gruppenvariable für mehrere unabhängige Einflussvariablen zu finden. In anderen Worten, die Diskriminanzanalyse liefert die Antwort. Seller Inventory # LU-9783486586916
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783486586916
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783486586916
Seller: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germany
Broschiert. Condition: Gut. 434 Seiten; Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber und kann entsprechende Merkmale aufweisen (Rückenschild, Instituts-Stempel.). Sprache: Deutsch Gewicht in Gramm: 875. Seller Inventory # 2260113
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783486586916_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783486586916
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi -Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl. ihrer Bias (z.B. Ausreißer, Chaining) erläutert. Anhand zahlreicher Beispiele wird erläutert, wie Intervalldaten, Häufigkeiten, Kategorialdaten, sowie gemischte Daten geclustert werden. Bei der partitionierenden Clusterzentrenanalyse (k-means, QUICK CLUSTER) lernen Sie Teststatistiken zur Bestimmung der optimalen Clusterzahl kennen (z.B. Eta , F-max; nicht im original SPSS Leistungsumfang enthalten), sowie die ausgewählte Clusterlösung auf Interpretierbarkeit, Stabilität und Validität zu prüfen. Bei der Two-Step Clusteranalyse (TWOSTEP CLUSTER) lernen Sie die Clusterung von gemischten Daten anhand eines Scoring-Algorithmus kennen Darüber hinaus lernen Sie Kriterien für die Beurteilung einer guten Clusterlösung kennen, wie auch alternative grafische und logische Ansätze zur Clusterung von auch Daten im String-Format. Kapitel 2 führt ein in die Gruppe der Faktorenanalyse mit SPSS. Die Faktorenanalyse (factor analysis, FA) ist ein Sammelbegriff für verschiedene Verfahren, die es ermöglichen, aus einer großen Zahl von Variablen eine möglichst geringe Anzahl von (nicht beobachteten) 'Faktoren' zu erhalten ('extrahieren'). Die Faktorenanalyse geht nicht von unabhängigen oder abhängigen Variablen aus, sondern behandelt alle Analysevariablen unabhängig von einem Kausalitätsstatus. Dieser Kurs führt in das Grundprinzip und Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) und ihre Funktion. Vorgestellt werden Kriterien zur Bestimmung, Interpretation und Benennung der Faktoren. Dieser Kurs stellt ausschließlich die Variante der explorativen Faktorenanalyse (EFA) vor (R-Typ). Abschliessend werden eine Faktorenanalyse für Fälle (Q-Typ Faktorenanalyse vorgestellt, sowie eine Matrix-Variante, die dann zum Einsatz kommen kann, wenn die korrelationsanalytischen Voraussetzungen der Faktorenanalyse nicht erfüllt sind. Die Überprüfung der Voraussetzungen und die Interpretation der Statistiken werden an zahlreichen Beispielen geübt. Kapitel 3 stellt die Diskriminanzanalyse (DA, syn.: DFA, Diskriminanzfunktionsanalyse) vor. Das zentrale Ziel dieses Ansatzes ist, die beste Trennung (Diskriminanz) zwischen den Zugehörigkeiten einer abhängigen Gruppenvariable für mehrere unabhängige Einflussvariablen zu finden. In anderen Worten, die Diskriminanzanalyse liefert die Antwort auf die Frage: Welche Kombination von Einflussvariablen erlaubt eine maximal trennende Aufteilung der Fälle in die bekannten Ausprägungen einer Gruppe Weitere, damit in Zusammenhang stehende Fragen können sein: Auf welche Weise werden die Fälle klassiert, wie genau werden die Fälle klassiert (erkennbar an der Anzahl der Fehlklassifikationen), und wie sind die schlussendlich entstehenden Klassifizierungen zu interpretieren Es werden u.a. diverse Methoden der Variablenselektion (direkt, schrittweise), sowie auch die Berechnung und Interpretation multipler schrittweiser Diskriminanzanalysen mit mehreren ermittelten Funktionen vorgestellt (einschliesslich Lambda, Box-Test, Kreuzvalidierung (Interpretation von Kovarianz-Matrizen), das Identifizieren von Multikollinearität, sowie Gebietskarten (Territorien). Weitere Kapitel stellen Möglichkeiten des Clusterns und Segmentierens (u.a. mit CLEMENTINE, Entscheidungsbäume und a. Seller Inventory # 9783486586916
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 456 pages. German language. 9.45x6.69x1.10 inches. In Stock. Seller Inventory # x-3486586912
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
Paperback. Condition: New. 1st. Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi²-Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl. ihrer Bias (z.B. Ausreißer, Chaining) erläutert. Anhand zahlreicher Beispiele wird erläutert, wie Intervalldaten, Häufigkeiten, Kategorialdaten, sowie gemischte Daten geclustert werden. Bei der partitionierenden Clusterzentrenanalyse (k-means, QUICK CLUSTER) lernen Sie Teststatistiken zur Bestimmung der optimalen Clusterzahl kennen (z.B. Eta², F-max; nicht im original SPSS Leistungsumfang enthalten), sowie die ausgewählte Clusterlösung auf Interpretierbarkeit, Stabilität und Validität zu prüfen. Bei der Two-Step Clusteranalyse (TWOSTEP CLUSTER) lernen Sie die Clusterung von gemischten Daten anhand eines Scoring-Algorithmus kennen Darüber hinaus lernen Sie Kriterien für die Beurteilung einer guten Clusterlösung kennen, wie auch alternative grafische und logische Ansätze zur Clusterung von auch Daten im String-Format. Kapitel 2 führt ein in die Gruppe der Faktorenanalyse mit SPSS. Die Faktorenanalyse (factor analysis, FA) ist ein Sammelbegriff für verschiedene Verfahren, die es ermöglichen, aus einer großen Zahl von Variablen eine möglichst geringe Anzahl von (nicht beobachteten) 'Faktoren' zu erhalten ('extrahieren'). Die Faktorenanalyse geht nicht von unabhängigen oder abhängigen Variablen aus, sondern behandelt alle Analysevariablen unabhängig von einem Kausalitätsstatus. Dieser Kurs führt in das Grundprinzip und Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) und ihre Funktion. Vorgestellt werden Kriterien zur Bestimmung, Interpretation und Benennung der Faktoren. Dieser Kurs stellt ausschließlich die Variante der explorativen Faktorenanalyse (EFA) vor (R-Typ). Abschliessend werden eine Faktorenanalyse für Fälle (Q-Typ Faktorenanalyse vorgestellt, sowie eine Matrix-Variante, die dann zum Einsatz kommen kann, wenn die korrelationsanalytischen Voraussetzungen der Faktorenanalyse nicht erfüllt sind. Die Überprüfung der Voraussetzungen und die Interpretation der Statistiken werden an zahlreichen Beispielen geübt. Kapitel 3 stellt die Diskriminanzanalyse (DA, syn.: DFA, Diskriminanzfunktionsanalyse) vor. Das zentrale Ziel dieses Ansatzes ist, die beste Trennung (Diskriminanz) zwischen den Zugehörigkeiten einer abhängigen Gruppenvariable für mehrere unabhängige Einflussvariablen zu finden. In anderen Worten, die Diskriminanzanalyse liefert die Antwort. Seller Inventory # LU-9783486586916