Items related to Development of New Hybrid Models for Prediction of...

Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms - Softcover

 
9783346551078: Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms

Synopsis

Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R's) and root mean squared errors (RMSE's). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.

"synopsis" may belong to another edition of this title.

Buy New

View this item

£ 19.95 shipping from Germany to U.S.A.

Destination, rates & speeds

Search results for Development of New Hybrid Models for Prediction of...

Seller Image

Fatih Abut
Published by GRIN Verlag Jan 2022, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. 148 pp. Englisch. Seller Inventory # 9783346551078

Contact seller

Buy New

£ 42.85
Convert currency
Shipping: £ 19.95
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Abut, Fatih
Published by Grin Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9783346551078

Contact seller

Buy New

£ 72.03
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Fatih Abut
Published by GRIN Verlag Jan 2022, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. Seller Inventory # 9783346551078

Contact seller

Buy New

£ 42.85
Convert currency
Shipping: £ 52.05
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Fatih Abut
Published by GRIN Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. Seller Inventory # 9783346551078

Contact seller

Buy New

£ 42.85
Convert currency
Shipping: £ 53.03
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Fatih Abut
Published by GRIN Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
New Taschenbuch

Seller: preigu, Osnabrück, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms | Fatih Abut | Taschenbuch | Englisch | 2022 | GRIN Verlag | EAN 9783346551078 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Seller Inventory # 120999217

Contact seller

Buy New

£ 42.85
Convert currency
Shipping: £ 60.73
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 5 available

Add to basket