Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations.
"synopsis" may belong to another edition of this title.
Dr. Jiguo Cao is the Canada Research Chair in Data Science and associate professor at the Department of Statistics and Actuarial Science, Simon Fraser University. His research interests include developing novel statistical methodologies and applications in functional data analysis and estimating parameters in differential equations from real data.
"About this title" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations. 240 pp. Englisch. Seller Inventory # 9783330072381
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Cao JiguoDr. Jiguo Cao is the Canada Research Chair in Data Science and associate professor at the Department of Statistics and Actuarial Science, Simon Fraser University. His research interests include developing novel statistical m. Seller Inventory # 151236336
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 240 pages. 8.66x5.91x0.55 inches. In Stock. Seller Inventory # 3330072385
Quantity: 1 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Parameter Cascading Method for Functional Data Analysis | Adaptive Penalized Smoothing, Estimating Semiparametric Additive Models and Inferring Differential Equation Models | Jiguo Cao | Taschenbuch | 240 S. | Englisch | 2017 | LAP LAMBERT Academic Publishing | EAN 9783330072381 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Seller Inventory # 109037245
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations.Books on Demand GmbH, Überseering 33, 22297 Hamburg 240 pp. Englisch. Seller Inventory # 9783330072381
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations. Seller Inventory # 9783330072381
Seller: Mispah books, Redhill, SURRE, United Kingdom
paperback. Condition: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA82933300723856