This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.
"synopsis" may belong to another edition of this title.
Robert Baldock completed his doctoral studies in Physics at the University of Cambridge, UK, in the Theory of Condensed Matter Group in the Cavendish Laboratory (supervised by Dr Gábor Csányi and Prof Michael Payne FRS). He is currently a Postdoc at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.
"About this title" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319667683_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 155914941
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure-volume-temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure-temperature phase diagrams of aluminium and a model binary alloy. Seller Inventory # 9783319667683
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319667683
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure¿volume¿temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure¿temperature phase diagrams of aluminium and a model binary alloy.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Seller Inventory # 9783319667683
Quantity: 2 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 156 pages. 9.25x6.10x0.47 inches. In Stock. Seller Inventory # x-3319667688
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020102766
Quantity: Over 20 available