This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. The method is based on the integration of measurements from different sensors (force/torque, inertial and tactile sensors) distributed along the robot’s kinematic chain. Humanoid robots require a substantial amount of sensor information to create their own representations of the surrounding environment. Tactile perception is of primary importance for the exploration process. Also in humans, the tactile system is completely functional at birth. In humanoid robotics, the measurements of forces and torques that the robot exchanges with its surroundings are essential for safe interaction with the environment and with humans. The approach proposed in this thesis can successfully enhance the perceptual capabilities of robots by exploiting only a limited number of both localized and distributed sensors, providing a feasible and convenient solution for achieving active compliance control of humanoid robots.
"synopsis" may belong to another edition of this title.
This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. The method is based on the integration of measurements from different sensors (force/torque, inertial and tactile sensors) distributed along the robot’s kinematic chain. Humanoid robots require a substantial amount of sensor information to create their own representations of the surrounding environment. Tactile perception is of primary importance for the exploration process. Also in humans, the tactile system is completely functional at birth. In humanoid robotics, the measurements of forces and torques that the robot exchanges with its surroundings are essential for safe interaction with the environment and with humans. The approach proposed in this thesis can successfully enhance the perceptual capabilities of robots by exploiting only a limited number of both localized and distributed sensors, providing a feasible and convenient solution for achieving active compliance control of humanoid robots.
"About this title" may belong to another edition of this title.
£ 1.97 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 27232456-n
Quantity: 15 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020095940
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319375731
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. The method is based on the integration of measurements from different sensors (force/torque, inertial and tactile sensors) distributed along the robots kinematic chain. Humanoid robots require a substantial amount of sensor information to create their own representations of the surrounding environment. Tactile perception is of primary importance for the exploration process. Also in humans, the tactile system is completely functional at birth. In humanoid robotics, the measurements of forces and torques that the robot exchanges with its surroundings are essential for safe interaction with the environment and with humans. The approach proposed in this thesis can successfully enhance the perceptual capabilities of robots by exploiting only a limited number of both localized and distributed sensors, providing a feasible and convenient solution for achieving active compliance control of humanoid robots. This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783319375731
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 27232456
Quantity: 15 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319375731_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 27232456-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis proposes an effective methodology for enhancing the perceptual capabilities and achieving interaction control of the iCub humanoid robot. The method is based on the integration of measurements from different sensors (force/torque, inertial and tactile sensors) distributed along the robot's kinematic chain. Humanoid robots require a substantial amount of sensor information to create their own representations of the surrounding environment. Tactile perception is of primary importance for the exploration process. Also in humans, the tactile system is completely functional at birth. In humanoid robotics, the measurements of forces and torques that the robot exchanges with its surroundings are essential for safe interaction with the environment and with humans. The approach proposed in this thesis can successfully enhance the perceptual capabilities of robots by exploiting only a limited number of both localized and distributed sensors, providing a feasible and convenient solution for achieving active compliance control of humanoid robots. 105 pp. Englisch. Seller Inventory # 9783319375731
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 27232456
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 458605033
Quantity: Over 20 available