This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
"synopsis" may belong to another edition of this title.
Dr. Virinchi Srinivas is a Graduate Research Assistant in the Department of Computer Science at the University of Maryland, College Park, MD, USA.
Dr. Pabitra Mitra is an Associate Professor in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur, India.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 25225898-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319289212_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783319289212
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Thiswork presents link prediction similarity measures for social networks that exploitthe degree distribution of the networks. In the context of link prediction indense networks, the text proposes similarity measures based on Markov inequalitydegree thresholding (MIDTs), which only consider nodes whose degree is above a thresholdfor a possible link. Also presented are similarity measures based on cliques(CNC, AAC, RAC), which assign extra weight between nodes sharing a greater numberof cliques. Additionally, a locally adaptive (LA) similarity measure isproposed that assigns different weights to common nodes based on the degreedistribution of the local neighborhood and the degree distribution of thenetwork. In the context of link prediction in dense networks, the textintroduces a novel two-phase framework that adds edges to the sparse graph toforma boost graph. 80 pp. Englisch. Seller Inventory # 9783319289212
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Thiswork presents link prediction similarity measures for social networks that exploitthe degree distribution of the networks. In the context of link prediction indense networks, the text proposes similarity measures based on Markov inequalitydegree thresholding (MIDTs), which only consider nodes whose degree is above a thresholdfor a possible link. Also presented are similarity measures based on cliques(CNC, AAC, RAC), which assign extra weight between nodes sharing a greater numberof cliques. Additionally, a locally adaptive (LA) similarity measure isproposed that assigns different weights to common nodes based on the degreedistribution of the local neighborhood and the degree distribution of thenetwork. In the context of link prediction in dense networks, the textintroduces a novel two-phase framework that adds edges to the sparse graph toforma boost graph. Seller Inventory # 9783319289212
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 25225898-n
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783319289212
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents anaccessible explanation of the role of power law degree distribution in linkpredictionDescribes arange of link prediction algorithms in an easy-to-understand mannerDiscusses the implementation of both the popularlink prediction algor. Seller Inventory # 106033966
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 67. Seller Inventory # 372095337
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 80 pages. 9.00x6.00x0.25 inches. In Stock. Seller Inventory # x-3319289217
Quantity: 2 available