This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection.
Researchers interested in the robust control of mechanical systems operating on unstable bases will find this monograph valuable. MATLAB® and Simulink® programs are available for download to make the methods described in the text easier to understand and to allow readers to experience practical procedures at first hand.
"synopsis" may belong to another edition of this title.
This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection.
Researchers interested in the robust control of mechanical systems operating on unstable bases will find this monograph valuable. MATLAB® and Simulink® programs are available for download to make the methods described in the text easier to understand and to allow readers to experience practical procedures at first hand.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020091022
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 24036150-n
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo č un articolo print on demand. Seller Inventory # 1c9470cc5fd7a3380e4d29c8f95547ca
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319217796_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783319217796
Quantity: 10 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 24036150-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection.Researchers interested in the robust control of mechanical systems operating on unstable bases will find this monograph valuable. MATLAB® and Simulink® programs are available for download to make the methods described in the text easier to understand and to allow readers to experience practical procedures at first hand. 160 pp. Englisch. Seller Inventory # 9783319217796
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 142. Seller Inventory # 26372596278
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 142. Seller Inventory # 373481961
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 142. Seller Inventory # 18372596284