This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy.
"synopsis" may belong to another edition of this title.
Gang Liu is a 4th year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. His research focuses on graph and generative learning for polymeric material discovery. He has over ten publications in top data mining and machine learning venues, including KDD, NeurIPS, ICML, DAC, ACL, TKDE, and TKDD. His methods have contributed to the discovery of new polymers, with findings published in Cell Reports Physical Science and secured by a provisional patent. He receives the 2024-2025 IBM PhD Fellowship for his work on Foundation Models.
Eric Inae is a 3rd year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.S. in Computer Science and B.S in Mathematics from Andrews University in 2022. His research emphasis is in graph machine learning with applications in material discovery and polymer science. He was awarded with the Dean’s Fellowship from the University of Notre Dame.
Meng Jiang, Ph.D., is an Associate Professor in the Department of Computer Science and Engineering at the University of Notre Dame. He received his B.E. and Ph.D. from Tsinghua University. He was a visiting scholar at Carnegie Mellon University and a postdoc at the University of Illinois Urbana-Champaign. He is interested in data mining, machine learning, and natural language processing. His data science research focuses on graph and text data for applications such as material discovery, question answering, user modeling, online education, and mental healthcare. He received the CAREER Award from the National Science Foundation and is a Senior Member of ACM and IEEE.
This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy.
In addition, this book:
Gang Liu is a 4th year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame.
Eric Inae is a 3rd year Ph.D. student in the Department of Computer Science and Engineering at the University of Notre Dame.
Meng Jiang, Ph.D., is an Associate Professor in the Department of Computer Science and Engineering at the University of Notre Dame.
"About this title" may belong to another edition of this title.
£ 1.96 shipping within U.S.A.
Destination, rates & speedsSeller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # 1WHAIIJJ8N
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 50261937-n
Quantity: 15 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy. This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783031847318
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783031847318
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 50261937
Quantity: 15 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26403685167
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 410517744
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a comprehensive range of topics in deep learning for polymer discovery, from fundamental concepts to advanced methodologies. These topics are crucial as they address critical challenges in polymer science and engineering. With a growing demand for new materials with specific properties, traditional experimental methods for polymer discovery are becoming increasingly time-consuming and costly. Deep learning offers a promising solution by enabling rapid screening of potential polymers and accelerating the design process. The authors begin with essential knowledge on polymer data representations and neural network architectures, then progress to deep learning frameworks for property prediction and inverse polymer design. The book then explores both sequence-based and graph-based approaches, covering various neural network types including LSTMs, GRUs, GCNs, and GINs. Advanced topics include interpretable graph deep learning with environment-based augmentation, semi-supervised techniques for addressing label imbalance, and data-centric transfer learning using diffusion models. The book aims to solve key problems in polymer discovery, including accurate property prediction, efficient design of polymers with desired characteristics, model interpretability, handling imbalanced and limited labeled data, and leveraging unlabeled data to improve prediction accuracy. 123 pp. Englisch. Seller Inventory # 9783031847318
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18403685157
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 135 pages. 9.44x6.61x9.61 inches. In Stock. Seller Inventory # x-3031847318
Quantity: 2 available