This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:
saddle-source (sink)
hyperbolic-to-hyperbolic-secant flows
double-saddle
third-order saddle, sink and source
third-order saddle-source (sink)
"synopsis" may belong to another edition of this title.
Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers and over 150 peer-reviewed conference papers.
This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:
saddle-source (sink)
hyperbolic-to-hyperbolic-secant flows
double-saddle
third-order saddle, sink and source
third-order saddle-source (sink)
"About this title" may belong to another edition of this title.
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783031595738
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the cor. Seller Inventory # 1543925115
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:saddle-source (sink)hyperbolic-to-hyperbolic-secant flowsdouble-saddlethird-order saddle, sink and sourcethird-order saddle-source (sink) 238 pp. Englisch. Seller Inventory # 9783031595738
Quantity: 2 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:saddle-source (sink)hyperbolic-to-hyperbolic-secant flowsdouble-saddlethird-order saddle, sink and sourcethird-order saddle-source (sink) This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783031595738
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:saddle-source (sink)hyperbolic-to-hyperbolic-secant flowsdouble-saddlethird-order saddle, sink and sourcethird-order saddle-source (sink)Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Seller Inventory # 9783031595738
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is the thirteenth of 15 related monographs on Cubic Dynamical Systems, discusses self- and product-cubic systems with a crossing-linear and self-quadratic products vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed through up-down saddles, third-order concave-source (sink), and up-down-to-down-up saddles infinite-equilibriums. The author discusses how equilibrium networks with paralleled hyperbolic and hyperbolic-secant flows exist in such cubic systems, and the corresponding switching bifurcations obtained through the inflection-source and sink infinite-equilibriums. In such cubic systems, the appearing bifurcations are:saddle-source (sink)hyperbolic-to-hyperbolic-secant flowsdouble-saddlethird-order saddle, sink and sourcethird-order saddle-source (sink). Seller Inventory # 9783031595738
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 222 pages. 9.25x6.10x9.49 inches. In Stock. Seller Inventory # x-3031595734
Quantity: 1 available