The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein’s 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg’s magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science.
"synopsis" may belong to another edition of this title.
Jaroslav Zamastil is an Associate Professor of theoretical physics at Charles University in Prague, Faculty of Mathematics and Physics. He teaches courses on undergraduate quantum mechanics, quantum electrodynamics, and field-theoretical methods in many-body problems. He conducts research in atomic and mathematical physics, and has published about 30 original scientific papers. His previous book, Quantum Mechanics and Electrodynamics, co-authored with Jakub Benda, was published in Czech (Nakladatelstvi Karolinum, 2016) and in English (Springer, 2017).
The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein’s 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg’s magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science.
"About this title" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783031373725_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein's 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg's magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science. 76 pp. Englisch. Seller Inventory # 9783031373725
Quantity: 2 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Understanding the Path from Classical to Quantum Mechanics 0.26. Book. Seller Inventory # BBS-9783031373725
Quantity: 5 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783031373725
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein's 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg's magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science. Seller Inventory # 9783031373725
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book s. Seller Inventory # 884945612
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 73 pages. 9.25x6.10x0.16 inches. In Stock. Seller Inventory # x-3031373723
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 400515472
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396942927
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein¿s 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg¿s magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 76 pp. Englisch. Seller Inventory # 9783031373725
Quantity: 2 available