Items related to Kernel Ridge Regression in Clinical Research

Kernel Ridge Regression in Clinical Research - Softcover

 
9783031107191: Kernel Ridge Regression in Clinical Research

Synopsis

IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include the


  • kernel trick for reduced arithmetic complexity,
  • estimation of uncertainty by Gaussians unlike histograms,
  • corrected data-overfit by ridge regularization,
  • availability of 8 alternative kernel density models for datafit.

A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things)studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics.

"synopsis" may belong to another edition of this title.

About the Author

Professor Dr. T.J. Cleophas is internist / clinical pharmacologist / statistician at the educational Albert Schweitzer Hospital Dordrecht Netherlands. He is the writer of many statistics textbooks, and he tutors statistics at the Universities of Amsterdam, Rotterdam, Utrecht, Maastricht, Leiden, Nijmegen, Netherlands. In 2020-2022 he was the invited author and editor of Springer Heidelberg Series on Machine Learning and Statistics Applied to Clinical Studies, which were bought by over 30 million professionals involved in Coronavirus research. He is currently completing an edition entitled "Kernel Ridge Regression in Clinical Research", addressing a novel methodology for big and multidimensiomal data analysis.


Professor Dr. A.H. Zwinderman is mathematical PhD, full professor of statistics, and principal investigator at the Academic Medical Center, University of Amsterdam. He authored 663 scientific papers and developed many novel statistical methods with particular focus on omics and big data research. He is co-founder of the sparse canonical methodology for the analysis of data with thousands of predictor variables, and together with Professor Cleophas he contributed to the statistical methods series in the journal Circulation. Much of his current work involves studies based on methodologies like parallel computing, the use of clustercomputers, GPU computing, and grid computing. 

From the Back Cover

IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include the


  • kernel trick for reduced arithmetic complexity,
  • estimation of uncertainty by Gaussians unlike histograms,
  • corrected data-overfit by ridge regularization,
  • availability of 8 alternative kernel density models for datafit.

A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things)studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9783031107160: Kernel Ridge Regression in Clinical Research

Featured Edition

ISBN 10:  3031107160 ISBN 13:  9783031107160
Publisher: Springer, 2022
Hardcover

Search results for Kernel Ridge Regression in Clinical Research

Stock Image

Cleophas, Ton J.; Zwinderman, Aeilko H.
Published by Springer, 2023
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9783031107191_new

Contact seller

Buy New

£ 79.13
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Cleophas, Ton J.|Zwinderman, Aeilko H.
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Kartoniert / Broschiert
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is sui. Seller Inventory # 1071297835

Contact seller

Buy New

£ 68.56
Convert currency
Shipping: £ 21.55
From Germany to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Aeilko H. Zwinderman
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include thekernel trick for reduced arithmetic complexity,estimation of uncertainty by Gaussians unlike histograms,corrected data-overfit by ridge regularization,availability of 8 alternative kernel density models for datafit.A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things) studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics. 308 pp. Englisch. Seller Inventory # 9783031107191

Contact seller

Buy New

£ 80.79
Convert currency
Shipping: £ 9.49
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Aeilko H. Zwinderman
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include thekernel trick for reduced arithmetic complexity,estimation of uncertainty by Gaussians unlike histograms,corrected data-overfit by ridge regularization,availability of 8 alternative kernel density models for datafit.A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things)studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics. Seller Inventory # 9783031107191

Contact seller

Buy New

£ 80.79
Convert currency
Shipping: £ 12.07
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Cleophas, Ton J.; Zwinderman, Aeilko H.
Published by Springer, 2023
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9783031107191

Contact seller

Buy New

£ 99.92
Convert currency
Shipping: £ 7.41
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Aeilko H. Zwinderman
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include thekernel trick for reduced arithmetic complexityestimation of uncertainty by Gaussians unlike histogramscorrected data-overfit by ridge regularizationavailability of 8 alternative kernel density models for datafit.A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things)studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Seller Inventory # 9783031107191

Contact seller

Buy New

£ 80.79
Convert currency
Shipping: £ 30.19
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Cleophas, Ton J.; Zwinderman, Aeilko H.
Published by Springer, 2023
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. pp. 308. Seller Inventory # 26398552507

Contact seller

Buy New

£ 105.59
Convert currency
Shipping: £ 6.66
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Cleophas, Ton J.; Zwinderman, Aeilko H.
Published by Springer, 2023
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Softcover
Print on Demand

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. PRINT ON DEMAND pp. 308. Seller Inventory # 18398552497

Contact seller

Buy New

£ 116.24
Convert currency
Shipping: £ 6.86
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Cleophas, Ton J./ Zwinderman, Aeilko H.
Published by Springer Nature, 2023
ISBN 10: 3031107195 ISBN 13: 9783031107191
New Paperback

Seller: Revaluation Books, Exeter, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: Brand New. 306 pages. 9.25x6.10x0.65 inches. In Stock. Seller Inventory # x-3031107195

Contact seller

Buy New

£ 116.40
Convert currency
Shipping: £ 6.99
Within United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket