Items related to Multidimensional Mining of Massive Text Data (Synthesis...

Multidimensional Mining of Massive Text Data (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9783031007866: Multidimensional Mining of Massive Text Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Synopsis

Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional―they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.

This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.

The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.

"synopsis" may belong to another edition of this title.

About the Author

Chao Zhang is an Assistant Professor in the School of Computational Science and Engineering, Georgia Institute of Technology. His research area is data mining and machine learning. He is particularly interested in developing label-efficient and robust learning techniques, with applications in text mining and spatiotemporal data mining. Chao has published more than 40 papers in top-tier conferences and journals, such as KDD, WWW, SIGIR, VLDB, and TKDE. He is the recipient of the ECML/PKDD Best Student Paper Runner-up Award (2015), Microsoft Star of Tomorrow Excellence Award (2014), and the Chiang Chen Overseas Graduate Fellowship (2013). His developed technologies have received wide media coverage and been transferred to industrial companies. Before joining Georgia Tech, he obtained his Ph.D. in Computer Science from University of Illinois at Urbana-Champaign in 2018.Jiawei Han is the Abel Bliss Professor in the Department of Computer Science, University of Illinois at Urbana-Champaign. He has been researching into data mining, information network analysis, database systems, and data warehousing, with over 900 journal and conference publications. He has chaired or served on many program committees of international conferences in most data mining and database conferences. He also served as the founding Editor-In-Chief of ACM Transactions on Knowledge Discovery from Data and the Director of Information Network Academic Research Center supported by U.S. Army Research Lab (2009–2016), and is the co-Director of KnowEnG, an NIH funded Center of Excellence in Big Data Computing since 2014. He is a Fellow of ACM, a Fellow of IEEE, and received 2004 ACM SIGKDD Innovations Award, 2005 IEEE Computer Society Technical Achievement Award, and 2009 M. Wallace McDowell Award from IEEE Computer Society. His co-authored book Data Mining: Concepts and Techniques has been adopted as a popular textbook worldwide.

"About this title" may belong to another edition of this title.

Buy New

View this item

£ 2.49 shipping within United Kingdom

Destination, rates & speeds

Other Popular Editions of the Same Title

Search results for Multidimensional Mining of Massive Text Data (Synthesis...

Stock Image

Zhang, Chao
Published by Springer 2019-03, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
New PF

Seller: Chiron Media, Wallingford, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

PF. Condition: New. Seller Inventory # 6666-IUK-9783031007866

Contact seller

Buy New

£ 51.20
Convert currency
Shipping: £ 2.49
Within United Kingdom
Destination, rates & speeds

Quantity: 10 available

Add to basket

Stock Image

Zhang, Chao; Han, Jiawei
Published by Springer, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In English. Seller Inventory # ria9783031007866_new

Contact seller

Buy New

£ 56.02
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Jiawei Han
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions (2) How does one distill knowledge from text data in a multidimensional space To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain. 200 pp. Englisch. Seller Inventory # 9783031007866

Contact seller

Buy New

£ 52.39
Convert currency
Shipping: £ 9.51
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Jiawei Han
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions (2) How does one distill knowledge from text data in a multidimensional space To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain. Seller Inventory # 9783031007866

Contact seller

Buy New

£ 52.39
Convert currency
Shipping: £ 12.09
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Zhang, Chao|Han, Jiawei
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applicati. Seller Inventory # 608129172

Contact seller

Buy New

£ 45.87
Convert currency
Shipping: £ 21.60
From Germany to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Zhang, Chao; Han, Jiawei
Published by Springer, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Softcover
Print on Demand

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Print on Demand. Seller Inventory # 402364395

Contact seller

Buy New

£ 67.11
Convert currency
Shipping: £ 3.35
Within United Kingdom
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Zhang, Chao; Han, Jiawei
Published by Springer, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26395061300

Contact seller

Buy New

£ 65.78
Convert currency
Shipping: £ 6.65
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Zhang, Chao; Han, Jiawei
Published by Springer, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Softcover
Print on Demand

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. PRINT ON DEMAND. Seller Inventory # 18395061310

Contact seller

Buy New

£ 71.89
Convert currency
Shipping: £ 6.87
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 4 available

Add to basket

Seller Image

Jiawei Han
ISBN 10: 3031007867 ISBN 13: 9783031007866
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional¿they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions (2) How does one distill knowledge from text data in a multidimensional space To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 200 pp. Englisch. Seller Inventory # 9783031007866

Contact seller

Buy New

£ 52.39
Convert currency
Shipping: £ 30.26
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket