This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
"synopsis" may belong to another edition of this title.
Jason Schwarz PhD is a Quantitative Researcher at Google and a former systems neurobiologist. His areas of research include perception, attention, motivation, behavioral pattern formation, and data visualization which he studies at scale at Google. Prior to joining Google, he was a data scientist at a startup where he ran analytics and developed and deployed production machine learning models on a Python stack.
Chris Chapman PhD is a Quantitative Researcher at Google, and an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015). In the broader industry, he has served as President of the American Marketing Association’s Practitioner Council, chaired the AMA Advanced Research Techniques Forum in 2012 and 2017, and is a member of several conference and industry committees. Chris regularly presents research innovations and teaches workshops on R, conjoint analysis, strategic modeling, and other analytics topics.
EleaMcDonnell Feit is an Assistant Professor of Marketing at Drexel University and a Senior Fellow of Marketing at The Wharton School. She enjoys making quantitative methods accessible to a broad audience and teaches workshops and courses on advertising measurement, marketing experiments, marketing analytics in R, discrete choice modeling and hierarchical Bayes methods. She is an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015).
This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
"About this title" may belong to another edition of this title.
FREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-317435
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 401802998
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26394574121
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18394574115
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783030497224
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783030497224_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab not Elektronisches Buch, which integrate code, figures, tables, and annotation in a single file. The code not Elektronisches Buch for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. 284 pp. Englisch. Seller Inventory # 9783030497224
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab not Elektronisches Buch, which integrate code, figures, tables, and annotation in a single file. The code not Elektronisches Buch for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. Seller Inventory # 9783030497224
Quantity: 1 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides an introduction to quantitative marketing with Python. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS. Seller Inventory # 517241087
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783030497224
Quantity: Over 20 available