Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more
AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services.
Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team.
By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production.
This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.
"synopsis" may belong to another edition of this title.
Trenton Potgieter is a Sr. AI/ML Specialist at AWS and has been working in the field of machine learning since 2011. At AWS, he assists multiple AWS customers to create ML solutions and has contributed to various use cases broadly spanning computer vision, knowledge graphs, and ML automation using MLOps methodologies. Trenton plays a key role in evangelizing the AWS ML services and shares best practices through forums such as AWS blogs, whitepapers, reference architectures, and public-speaking events. He has also actively been involved in leading, developing, and supporting an AWS internal community of MLOps-related subject matter experts.
"About this title" may belong to another edition of this title.
£ 27.36 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781801811828_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781801811828
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Seller Inventory # C9781801811828
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781801811828
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781801811828
Quantity: Over 20 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Automated Machine Learning on AWS: Fast-track the development of your production-ready machine learning applications the AWS way 1.58. Book. Seller Inventory # BBS-9781801811828
Quantity: 5 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 420. Seller Inventory # 401733597
Quantity: 4 available
Seller: BookHolders, Towson, MD, U.S.A.
Condition: Very Good. [ No Hassle 30 Day Returns ][ Ships Daily ] [ Underlining/Highlighting: NONE ] [ Writing: NONE ] [ Edition: first ] Publisher: Packt Publishing Pub Date: 4/15/2022 Binding: paperback Pages: 420 first edition. Seller Inventory # 6924249
Quantity: 1 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Automated Machine Learning on AWS is a practical guide that provides hands-on experience to help you learn how to automate a machine learning pipeline using the various AWS services. With this book, you will be able to successfully overcome any machine lear. Seller Inventory # 596962683
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key Features:Explore the various AWS services that make automated machine learning easier Recognize the role of DevOps and MLOps methodologies in pipeline automation Get acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challenges Book Description: AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What You Will Learn:Employ SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning process Understand how to use AutoGluon to automate complicated model building tasks Use the AWS CDK to codify the machine learning process Create, deploy, and rebuild a CI/CD pipeline on AWS Build an ML workflow using AWS Step Functions and the Data Science SDK Leverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC) Discover how to use Amazon MWAA for a data-centric ML process Who this book is for: This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book. Seller Inventory # 9781801811828
Quantity: 1 available