Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python.
Key Features
Book Description
Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.
The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools.
By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs.
What you will learn
Who this book is for
Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.
Table of Contents
"synopsis" may belong to another edition of this title.
Ivan Marin is a Systems Architect and Data Scientist working at Daitan Group, a Campinas based software company. He designs Big Data systems for large volumes of data, and implements Machine Learning pipelines end to end using Python and Spark. He is also an active organizer of Data Science, Machine Learning and Python in São Paulo and has given Python for Data Science courses at university level.
Sarang VK in his current role as a data scientist, his responsibilities include identifying data sources, data preparation, development, and evaluation of predictive and optimization models for setting up production level machine learning / statistical solutions with back-end and front-end developments. Alongside, he supports pre-sales, stakeholder communication, requirement gathering, scoping, and solutions.
His strengths are Machine / Deep Learning, SQL, Predictive Analytics, Time-Series, Simulation Modelling, Optimization, Image/Text Analytics, NLP, Python, R, Spark, TensorFlow, Keras, h2o, SAP-PAL, AWS, SAP Predictive Factory, Azure, Financial Analytics, Supply Chain, Banking and Insurance, Retail/Customer Analytics, Trading Analytics, Healthcare Analytics, RPA, IPA.
Ankit Shukla is Data Scientist with a passion for using data science & advanced analytics to solve real-life problems and bring ideas to fruition. Skilled in using Machine Learning/AI & statistical modelling techniques to solve business problems & create actual dollar value for clients. Experienced in working with copious amounts of data, using the latest Big Data technologies to design data pipelines and generate impactful data-driven insights & reports.
His skill sets are: R, Python, SQL, HiveQL, Excel, Linux Shell Scripting, SAS (Working Knowledge), Docker Frameworks: Keras, OpenCV, XGBoost, NumPy, Scikit-learn, Caret, ggplot2, recommended lab Big Data: Hadoop, Hive, Impala, PySpark, SparkR, Pig, AWS (S3, EC-2, EMR, Sagemaker, Redshift) Machine Learning: Regression, Classification, Clustering, Feature Selection, Model Selection/Assessment, Recommender Systems, Neural Networks, Deep Learning, Transfer Learning Visualization: Tableau, R, Shiny.
"About this title" may belong to another edition of this title.
£ 5.60 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: WorldofBooks, Goring-By-Sea, WS, United Kingdom
Paperback. Condition: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Seller Inventory # GOR014303947
Quantity: 1 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00049484265
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_377408909
Quantity: 1 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781789955286
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 35533123-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2912160187744
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781789955286
Quantity: Over 20 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Big Data Analysis with Python 1.06. Book. Seller Inventory # BBS-9781789955286
Quantity: 5 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 35533123
Quantity: Over 20 available
Seller: Grumpys Fine Books, Tijeras, NM, U.S.A.
Paperback. Condition: new. Prompt service guaranteed. Seller Inventory # Clean1789955289
Quantity: 1 available