Perform groupwise data manipulation and deal with large datasets using R efficiently and effectively
About This Book
Who This Book Is For
This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.
What You Will Learn
In Detail
One of the most important aspects of computing with data is the ability to manipulate it to enable subsequent analysis and visualization. R offers a wide range of tools for this purpose. Data from any source, be it flat files or databases, can be loaded into R and this will allow you to manipulate data format into structures that support reproducible and convenient data analysis.
This practical, example-oriented guide aims to discuss the split-apply-combine strategy in data manipulation, which is a faster data manipulation approach. After reading this book, you will not only be able to efficiently manage and check the validity of your datasets with the split-apply-combine strategy, but you will also learn to handle larger datasets.
This book starts with describing the R object's mode and class, and then highlights different R data types, explaining their basic operations. You will focus on group-wise data manipulation with the split-apply-combine strategy, supported by specific examples. You will also learn to efficiently handle date, string, and factor variables along with different layouts of datasets using the reshape2 package. You will learn to use plyr effectively for data manipulation, truncating and rounding data, simulating data sets, as well as character manipulation. Finally you will get acquainted with using R with SQL databases.
"synopsis" may belong to another edition of this title.
Jaynal Abedin
Jaynal Abedin currently holds the position of Statistician at the Centre for Communicable Diseases (CCD) at icddr,b (www.icddrb.org). He attained his Bachelor's and Master's degrees in Statistics from the University of Rajshahi, Rajshahi, Bangladesh. He has vast experience in R programming and Stata and has efficient leadership qualities. He is currently leading a team of statisticians. He has handson experience in developing training material and facilitating training in R programming and Stata along with statistical aspects in public health research. His primary area of interest in research includes causal inference and machine learning. He is currently involved in several ongoing public health research projects and is a coauthor of several workinprogress manuscripts. In the useR! Conference 2013, he presented a poster—edeR: Email Data Extraction using R, available at http://www.edii.uclm.es/~useR2013/abstracts/files/34_edeR_Email_ Data_Extraction_using_R.pdf—and obtained the best application poster award. He is also involved in reviewing scientific manuscripts for the Journal of Applied Statistics (JAS) and the Journal of Health Population and Nutrition (JHPN). He is also a successful freelance statistician on online platforms and has an excellent reputation through his highquality work, especially in R programming. He can be contacted at joystatru@gmail.com, http://bd.linkedin.com/in/jaynal; his Twitter handle is @jaynal83.
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want