Spectral Analysis of Signals: The Missing Data Case (Synthesis Lectures on Signal Processing) - Softcover

Wang, Yanwei

 
9781598290004: Spectral Analysis of Signals: The Missing Data Case (Synthesis Lectures on Signal Processing)

Synopsis

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.

"synopsis" may belong to another edition of this title.

Synopsis

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in a wide range of applications. This lecture considers the spectral estimation problem in the case where some of the data samples are missing. The challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data spectral estimation problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches. They provide the main topic of this lecture. The authors present the recently developed nonparametric adaptive filtering based algorithms for the missing-data case, namely gapped-data APES (GAPES) and the more general missing-data APES (MAPES).

"About this title" may belong to another edition of this title.