The endoplasmic reticulum is a continuous membrane network in the cytosol, which encloses its internal compartment, the endoplasmic reticulum lumen. Several metabolic pathways are compartmentalised within the ER lumen, for example hydrolysis of glucose 6-phosphate, glucuronidation of endo- xenobiotics, posttranslational modification of proteins including redox reactions required for oxidative folding, oxidoreduction of steroid hormones, synthesis of ascorbate. Therefore, enzyme activities of these pathways depend on the special luminal microenvironment, on access to substrates and on release of products. However, in spite of great efforts, the molecular mechanism for the generation and maintenance of this special microenvironment still remains to be elucidated. Beside the well-known functions of the endoplasmic reticulum, such as calcium signaling and the synthesis of secretory proteins, recent findings underlined the importance of the intraluminal redox biochemistry and the role of membrane transporters. The field is currently undergoing extensive reappraisal, new transporters have been identified either molecular or functional level. The local synthesis and the membrane transport of redox active compounds (pro- and antioxidants) seem to be important not only in the disulfide bond formation, but also in the generation of intracellular proliferative/apoptotic signals. The different points of views in this publication help highlight the potential importance of several recently described phenomena, whose significance needs elucidation.
"synopsis" may belong to another edition of this title.
The endoplasmic reticulum is a continuous membrane network in the cytosol, which encloses its internal compartment, the endoplasmic reticulum lumen. Several metabolic pathways are compartmentalised within the ER lumen, for example hydrolysis of glucose 6-phosphate, glucuronidation of endo- xenobiotics, posttranslational modification of proteins including redox reactions required for oxidative folding, oxidoreduction of steroid hormones, synthesis of ascorbate. Therefore, enzyme activities of these pathways depend on the special luminal microenvironment, on access to substrates and on release of products. However, in spite of great efforts, the molecular mechanism for the generation and maintenance of this special microenvironment still remains to be elucidated. Beside the well-known functions of the endoplasmic reticulum, such as calcium signaling and the synthesis of secretory proteins, recent findings underlined the importance of the intraluminal redox biochemistry and the role of membrane transporters. The field is currently undergoing extensive reappraisal, new transporters have been identified either molecular or functional level. The local synthesis and the membrane transport of redox active compounds (pro- and antioxidants) seem to be important not only in the disulfide bond formation, but also in the generation of intracellular proliferative/apoptotic signals. The different points of views in this publication help highlight the potential importance of several recently described phenomena, whose significance needs elucidation.
The endoplasmic reticulum is a continuous membrane network in the cytosol, which encloses its internal compartment, the endoplasmic reticulum lumen. Several metabolic pathways are compartmentalised within the ER lumen, for example hydrolysis of glucose 6-phosphate, glucuronidation of endo- xenobiotics, posttranslational modification of proteins including redox reactions required for oxidative folding, oxidoreduction of steroid hormones, synthesis of ascorbate. Therefore, enzyme activities of these pathways depend on the special luminal microenvironment, on access to substrates and on release of products. However, in spite of great efforts, the molecular mechanism for the generation and maintenance of this special microenvironment still remains to be elucidated. Beside the well-known functions of the endoplasmic reticulum, such as calcium signaling and the synthesis of secretory proteins, recent findings underlined the importance of the intraluminal redox biochemistry and the role of membrane transporters. The field is currently undergoing extensive reappraisal, new transporters have been identified either molecular or functional level. The local synthesis and the membrane transport of redox active compounds (pro- and antioxidants) seem to be important not only in the disulfide bond formation, but also in the generation of intracellular proliferative/apoptotic signals. The different points of views in this publication help highlight the potential importance of several recently described phenomena, whose significance needs elucidation.
"About this title" may belong to another edition of this title.
Seller: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germany
1st ed. 16 x 24 cm. 151 pages. Hardcover HC Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Seller Inventory # 8578VB
Seller: Antiquariat Andree Schulte, Grafschaft-Ringen, Germany
Large 8vo. Hardcover, fine. X / 151pp. -TEXT IN ENGLISH- Sprache: Englisch Gewicht in Gramm: 500. Seller Inventory # 121668
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. x + 151 1st Edition. Seller Inventory # 26480957
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. x + 151 Illus. Seller Inventory # 7399778
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. x + 151. Seller Inventory # 18480951
Seller: Mispah books, Redhill, SURRE, United Kingdom
hardcover. Condition: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA800158603474X6
Quantity: 1 available