Machine Learning Methods for Planning (The Morgan Kaufmann Series in Machine Learning) - Hardcover

Minton, Steven

 
9781558602489: Machine Learning Methods for Planning (The Morgan Kaufmann Series in Machine Learning)

Synopsis

Research on planning systems has shown that domain knowledge is crucial for effectively coping with complex, changing environments. Unfortunately, acquiring and incorporating the necessary domain knowledge can be a significant problem when building a practical planning system. The knowledge engineering process is typically time-consuming and expensive. Furthermore, if a human expert is not available it may be extremely difficult to obtain the necessary knowledge. One solution is for a system to automatically acquire domain-specific knowledge through learning. The idea of a planning system that can improve its performance with experience is very attractive. Furthermore, advances in machine learning have provided a deeper understanding of learning mechanisms relevant to acquiring such knowledge. For this reason, there is a great deal of interest in this area of artificial intelligence. This book brings together, in one volume, a set of chapters from the primary researchers in the field, presenting a picture of its current state and its likely areas for application. The chapters describe a variety of learning methods-including analogical, case-based, explanation-based, decision-tree, and reinforcement techniques-and a wide range of planning architectures, running the gamut from STRIPS-like systems to problem-reduction architectures to reactive agents. It will draw the interest of AI researchers and system developers, especially those in machine learning, planning, and scheduling, as well as researchers from other fields, such as operations research, that focus on automated planning.

"synopsis" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781483207742: Machine Learning Methods for Planning

Featured Edition

ISBN 10:  1483207749 ISBN 13:  9781483207742
Publisher: Morgan Kaufmann, 2014
Softcover