Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext.
Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you:
"synopsis" may belong to another edition of this title.
Matthew Kirk holds a B.S. in Economics and a B.S. in Applied and Computational Mathematical Sciences with a concentration in Quantitative Economics from the University of Washington. He is also studying for his M.S. in Computer Science at the Georgia Institute of Technology. He started Modulus 7, a data science and Ruby development consulting firm, in early 2012. Matthew has spoken around the world about using machine learning and data science with Ruby
"About this title" may belong to another edition of this title.
Seller: HPB-Ruby, Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_449095788
Seller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_378492108
Seller: Mahler Books, PFLUGERVILLE, TX, U.S.A.
Paperback. Condition: Very Good. This book is in very good condition; no remainder marks. It does have some cover shelfwear. Inside pages are clean. ; 220 pages. Seller Inventory # 09GW22-393-311
Seller: HPB-Diamond, Dallas, TX, U.S.A.
paperback. Condition: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_455939520
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 23775082-n
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # WO-9781491924136
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 23775082
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # WO-9781491924136
Quantity: 15 available
Seller: Toscana Books, AUSTIN, TX, U.S.A.
Paperback. Condition: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Seller Inventory # Scanned1491924136
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext. Featuring graphs and highlighted code examples throughout, the book features tests with Python's Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you're a software engineer or business analyst interested in data science, this book will help you: Reference real-world examples to test each algorithm through engaging, hands-on exercises Apply test-driven development (TDD) to write and run tests before you start coding Explore techniques for improving your machine-learning models with data extraction and feature development Watch out for the risks of machine learning, such as underfitting or overfitting data Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms. Seller Inventory # LU-9781491924136
Quantity: 10 available