Items related to Data Science Solutions with Python: Fast and Scalable...

Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn - Softcover

 
9781484277614: Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn

Synopsis

Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. 

The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.

The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.

This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics. 



What You Will Learn
  • Understand widespread supervised and unsupervised learning, including key dimension reduction techniques
  • Know the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learning
  • Integrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworks
  • Design, build, test, and validate skilled machine models and deep learning models
  • Optimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alteration

 

Who This Book Is For

Data scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics

"synopsis" may belong to another edition of this title.

About the Author

Tshepo Chris Nokeri harnesses advanced analytics and artificial intelligence to foster innovation and optimize business performance. In his functional work, he has delivered complex solutions to companies in the mining, petroleum, and manufacturing industries. He initially completed a bachelor’s degree in information management. Afterward, he graduated with an Honours degree in business science at the University of the Witwatersrand on a TATA Prestigious Scholarship and a Wits Postgraduate Merit Award. They unanimously awarded him the Oxford University Press Prize.

From the Back Cover

Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. 

The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.

The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model(Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.

This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics. 

What You Will Learn
  • Understand widespread supervised and unsupervised learning, including key dimension reduction techniques
  • Know the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learning
  • Integrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworks
  • Design, build, test, and validate skilled machine models and deep learning models
  • Optimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alteration

 



"About this title" may belong to another edition of this title.

Buy Used

Condition: As New
Unread book in perfect condition...
View this item

FREE shipping within United Kingdom

Destination, rates & speeds

Search results for Data Science Solutions with Python: Fast and Scalable...

Seller Image

Nokeri, Tshepo Chris
Published by Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
Used Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 43689087

Contact seller

Buy Used

£ 26.93
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket

Seller Image

Nokeri, Tshepo Chris
Published by Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Softcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 43689087-n

Contact seller

Buy New

£ 30.37
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket

Stock Image

Nokeri, Tshepo Chris
Published by Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9781484277614_new

Contact seller

Buy New

£ 30.38
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Nokeri, Tshepo Chris
Published by Apress 2021-10, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New PF

Seller: Chiron Media, Wallingford, United Kingdom

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

PF. Condition: New. Seller Inventory # 6666-IUK-9781484277614

Contact seller

Buy New

£ 27.92
Convert currency
Shipping: £ 2.49
Within United Kingdom
Destination, rates & speeds

Quantity: 10 available

Add to basket

Stock Image

Tshepo Chris Nokeri
Published by APress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Paperback / softback
Print on Demand

Seller: THE SAINT BOOKSTORE, Southport, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 209. Seller Inventory # C9781484277614

Contact seller

Buy New

£ 34.55
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Nokeri, Tshepo Chris
Published by Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 43689087

Contact seller

Buy Used

£ 21.10
Convert currency
Shipping: £ 15.04
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket

Seller Image

Nokeri, Tshepo Chris
Published by Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 43689087-n

Contact seller

Buy New

£ 23.10
Convert currency
Shipping: £ 15.04
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket

Seller Image

Tshepo Chris Nokeri
Published by Apress Okt 2021, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras. The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics.What You Will LearnUnderstand widespread supervised and unsupervised learning, including key dimension reduction techniquesKnow the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learningIntegrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworksDesign, build, test, and validate skilled machine models and deep learning modelsOptimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alterationWho This Book Is ForData scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics 136 pp. Englisch. Seller Inventory # 9781484277614

Contact seller

Buy New

£ 33.62
Convert currency
Shipping: £ 9.59
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Tshepo Chris Nokeri
Published by Apress, Apress, 2021
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Taschenbuch
Print on Demand

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras. The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics.What You Will LearnUnderstand widespread supervised and unsupervised learning, including key dimension reduction techniquesKnow the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learningIntegrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworksDesign, build, test, and validate skilled machine models and deep learning modelsOptimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alterationWho This Book Is ForData scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics. Seller Inventory # 9781484277614

Contact seller

Buy New

£ 34.68
Convert currency
Shipping: £ 12.20
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Nokeri, Tshepo Chris
Published by Springer, Berlin|Apress, 2022
ISBN 10: 1484277619 ISBN 13: 9781484277614
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intermediate-Advanced user levelApply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and a. Seller Inventory # 501191693

Contact seller

Buy New

£ 29.10
Convert currency
Shipping: £ 21.79
From Germany to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

There are 5 more copies of this book

View all search results for this book