Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.
The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains.
After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python.
What You Will Learn
Who This Book Is For
Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.
"synopsis" may belong to another edition of this title.
Puneet Mathur is an author, AI consultant, and speaker who has over 20 years of corporate IT industry experience. He has risen from being a programmer to a third line manager working with multinationals such as HP, IBM, and Dell at various levels. For several years he has been working as an AI consultant through his company Boolbrite International for clients around the globe, by guiding and mentoring client teams stuck with AI and machine learning problems. He also conducts leadership and motivational workshops, and AI-based hands-on corporate workshops. His latest bestselling book, Machine Learning Applications using Python (Apress, 2018), is for machine learning professionals who want to advance their career by gaining experiential knowledge from an AI expert. His other books include The Predictive Program Manager, Prediction Secrets, and Good Money Bad Money.
Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.
The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python.You will:
"About this title" may belong to another edition of this title.
£ 26.32 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9781484255483_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 500. Seller Inventory # C9781484255483
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains.After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python.What You Will LearnImplement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratchWho This Book Is ForRaspberry Pi and Arduino enthusiasts and data science and machine learning professionals. 296 pp. Englisch. Seller Inventory # 9781484255483
Quantity: 2 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781484255483
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers applying machine learning with the Internet of Things (IoT) in the agriculture, telecom, and energy sectors Helps create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. Seller Inventory # 329135603
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains.After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python.What You Will LearnImplement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratchWho This Book Is ForRaspberry Pi and Arduino enthusiasts and data science and machine learning professionals. Seller Inventory # 9781484255483
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 232. Seller Inventory # 369168448
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 232. Seller Inventory # 26376876959
Quantity: 4 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00057848145
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 278 pages. 9.00x6.00x0.75 inches. In Stock. Seller Inventory # x-1484255488
Quantity: 2 available