Items related to Machine Learning with PySpark: With Natural Language...

Machine Learning with PySpark: With Natural Language Processing and Recommender Systems - Softcover

 
9781484241301: Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

Synopsis

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. 

Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. 

After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.

What You Will Learn
  • Build a spectrum of supervised and unsupervised machine learning algorithms
  • Implement machine learning algorithms with Spark MLlib libraries
  • Develop a recommender system with Spark MLlib libraries
  • Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

Who This Book Is For 

Data science and machine learning professionals. 


"synopsis" may belong to another edition of this title.

About the Author

Pramod Singh is an established data scientist with over eight years of experience in data and solving business challenges. He has worked in organizations such as Infosys, Tally and SapientRazorfish. Also, president of a data science meet-up group and regular speaker at various webinars. Recently spoke at major conference: GIDS 2018 and presented a session on “Sequence Embedding in Spark” which was well received. He has an online Udemy course on machine learning.

From the Back Cover

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. 

Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. 

After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.

You will:
  • Build a spectrum of supervised and unsupervised machine learning algorithms
  • Implement machine learning algorithms with Spark MLlib libraries
  • Develop a recommender system with Spark MLlib libraries
  • Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

"About this title" may belong to another edition of this title.

Buy New

View this item

£ 10 shipping from United Kingdom to U.S.A.

Destination, rates & speeds

Other Popular Editions of the Same Title

9781484247990: Machine Learning with PySpark : With Natural Language Processing and Recommender Systems

Featured Edition

ISBN 10:  148424799X ISBN 13:  9781484247990
Publisher: Apress / KP
Softcover

Search results for Machine Learning with PySpark: With Natural Language...

Stock Image

Singh, Pramod
Published by Apress, 2018
ISBN 10: 1484241304 ISBN 13: 9781484241301
New Paperback

Seller: Revaluation Books, Exeter, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: Brand New. 223 pages. 9.25x6.25x0.55 inches. In Stock. Seller Inventory # zk1484241304

Contact seller

Buy New

£ 41.96
Convert currency
Shipping: £ 10
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket