For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems.
"synopsis" may belong to another edition of this title.
VLSI: Systems on a Chip The current trend towards the realization of complex and versatile Systems on a Chip requires the combined efforts and attention of experts in a wide range of areas including microsystems, embedded hardware/software systems, dedicated ASIC and programmable logic hardware, reconfigurable computing, wireless communications and RF issues, video and image processing, memory systems, low power design techniques, design, test and verification algorithms, modeling and simulation, logic synthesis, and interconnect analysis. Thus, the contributions presented herein address a wide range of Systems on a Chip problems. VLSI: Systems on a Chip comprises the sele...
"About this title" may belong to another edition of this title.
£ 20.97 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on. Seller Inventory # 4206958
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781475710144_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems. 696 pp. Englisch. Seller Inventory # 9781475710144
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems. Seller Inventory # 9781475710144
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030093191
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 700 pages. 9.25x6.10x1.57 inches. In Stock. Seller Inventory # x-1475710143
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 696. Seller Inventory # 2697860741
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -For over three decades now, silicon capacity has steadily been doubling every year and a half with equally staggering improvements continuously being observed in operating speeds. This increase in capacity has allowed for more complex systems to be built on a single silicon chip. Coupled with this functionality increase, speed improvements have fueled tremendous advancements in computing and have enabled new multi-media applications. Such trends, aimed at integrating higher levels of circuit functionality are tightly related to an emphasis on compactness in consumer electronic products and a widespread growth and interest in wireless communications and products. These trends are expected to persist for some time as technology and design methodologies continue to evolve and the era of Systems on a Chip has definitely come of age. While technology improvements and spiraling silicon capacity allow designers to pack more functions onto a single piece of silicon, they also highlight a pressing challenge for system designers to keep up with such amazing complexity. To handle higher operating speeds and the constraints of portability and connectivity, new circuit techniques have appeared. Intensive research and progress in EDA tools, design methodologies and techniques is required to empower designers with the ability to make efficient use of the potential offered by this increasing silicon capacity and complexity and to enable them to design, test, verify and build such systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 696 pp. Englisch. Seller Inventory # 9781475710144
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 696. Seller Inventory # 1897860751
Quantity: 4 available