Fourier Analysis and Convexity (Applied and Numerical Harmonic Analysis) - Softcover

 
9781461264743: Fourier Analysis and Convexity (Applied and Numerical Harmonic Analysis)

Synopsis

During the last century the relationship between Fourier analysis and other areas of mathematics has been systematically explored resulting in important advances in geometry, number theory, and analysis. The expository articles in this unified, self-contained volume explore those advances and connections. Specific topics covered included: geometric properties of convex bodies, Radon transforms, geometry of numbers, tilings, irregularities in distributions, and restriction problems for the Fourier transform. Graduate students and researchers in harmonic analysis, convex geometry, and functional analysis will benefit from the book’s careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way.

"synopsis" may belong to another edition of this title.

From the Back Cover

Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitz’s proof of the isoperimetric inequality using Fourier series.                                                            

This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include:

* the geometric properties of convex bodies

* the study of Radon transforms

* the geometry of numbers

* the study of translational tilings using Fourier analysis

* irregularities in distributions

* Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis

* restriction problems for the Fourier transform  

The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way.

Contributors: J. Beck, C. Berenstein, W.W.L. Chen, B. Green, H. Groemer, A. Koldobsky, M. Kolountzakis, A. Magyar, A.N. Podkorytov, B. Rubin, D. Ryabogin, T. Tao, G. Travaglini, A. Zvavitch

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9780817632632: Fourier Analysis and Convexity (Applied & Numerical Harmonic Analysis S.)

Featured Edition

ISBN 10:  0817632638 ISBN 13:  9780817632632
Publisher: Birkhäuser, 2004
Hardcover