This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.
Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:
• multilayer perceptron;
• the Hopfield network;
• associative memory models;• clustering models and algorithms;
• t he radial basis function network;
• recurrent neural networks;
• nonnegative matrix factorization;
• independent component analysis;
•probabilistic and Bayesian networks; and
• fuzzy sets and logic.
Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
"synopsis" may belong to another edition of this title.
Ke-Lin Du is currently the founder and CEO at Xonlink Inc., China. He is also an Affiliate Associate Professor at the Department of Electrical and Computer Engineering, Concordia University, Canada. In the past, he held positions at Huawei Technologies, the China Academy of Telecommunication Technology, the Chinese University of Hong Kong, the Hong Kong University of Science and Technology, Concordia University, and Enjoyor Inc. He has published four books and over 50 papers, and filed over 30 patents. A Senior Member of the IEEE, his current research interests include signal processing, neural networks, intelligent systems, and wireless communications.
MNS Swamy is currently a Research Professor and holder of the Concordia Tier I Research Chair of Signal Processing at the Department of Electrical and Computer Engineering, Concordia University, where he was Dean of the Faculty of Engineering and ComputerScience from 1977 to 1993 and the founding Chair of the EE department. He has published extensively in the areas of circuits, systems and signal processing, and co-authored nine books and holds five patents. Professor Swamy is a Fellow of the IEEE, IET (UK) and EIC (Canada), and has received many IEEE-CAS awards, including the Guillemin-Cauer award in 1986, as well as the Education Award and the Golden Jubilee Medal, both in 2000. He has been the Editor-in-Chief of the journal Circuits, Systems and Signal Processing (CSSP) since 1999. Recently, CSSP has instituted the Best Paper Award in his name.
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.
Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:
• multilayer perceptron;Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
"About this title" may belong to another edition of this title.
£ 84.77 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781447174516_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Extensively updated second edition with new chapters on spar coding, deep learning, big data and cloud computingA comprehensive introduction to neural networks and statistical learning from a practical perspective. Seller Inventory # 300451260
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includessixnew chapters that correspond to the recent advances in computational learning theory,sparsecoding, deep learning, big data and cloud computing.Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:- multilayer perceptron;- the Hopfield network;- associative memory models;- clustering models and algorithms;- t he radial basis function network;- recurrent neural networks;- nonnegative matrix factorization;- independent component analysis;-probabilistic and Bayesian networks; and- fuzzy sets and logic.Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning. 1020 pp. Englisch. Seller Inventory # 9781447174516
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includessixnew chapters that correspond to the recent advances in computational learning theory,sparsecoding, deep learning, big data and cloud computing.Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:- multilayer perceptron;- the Hopfield network;- associative memory models;- clustering models and algorithms;- t he radial basis function network;- recurrent neural networks;- nonnegative matrix factorization;- independent component analysis;-probabilistic and Bayesian networks; and- fuzzy sets and logic.Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning. Seller Inventory # 9781447174516
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_383551725
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:¿ multilayer perceptron;¿ the Hopfield network;¿ associative memory models;¿ clustering models and algorithms;¿ t he radial basis function network;¿ recurrent neural networks;¿ nonnegative matrix factorization;¿ independent component analysis;¿probabilistic and Bayesian networks; and¿ fuzzy sets and logic.Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 1020 pp. Englisch. Seller Inventory # 9781447174516
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530318138
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2nd edition. 988 pages. 9.25x6.25x2.25 inches. In Stock. Seller Inventory # x-1447174518
Quantity: 2 available