This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion.
The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
"synopsis" may belong to another edition of this title.
Antonio Tornambč is a professor and Laura Menini is an associate professor, both in the area "Automatica", which covers both control Theory and robotics. Both of them have been involved in research in those fields generally and, of particular relevance to this book, they have worked on observer design for nonlinear systems (possibly subject to impulsive effects), on stabilization and tracking by state feedback for nonlinear systems, on modeling and control of mechanical systems (possibly subject to impacts), and on control of Hamiltonian systems. They also have wide experience of teaching and their main motivation for writing this book is that of collecting some recent results on the analysis of nonlinear systems, most of them hitherto unpublished, in the mathematical framework that allows both their rigorous derivation and a deep understanding of their meaning and their applicability.
Symmetries and Semi-invariants in the Analysis of Nonlinear Systems details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the essential tools for the analysis, tools such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. The use of such tools allows the solution of some important problems, studied in detail in the text, which include linearization by state immersion and the computation of nonlinear superposition formulae for nonlinear systems described by solvable Lie algebras.
The theory is developed for general nonlinear systems and, in view of their importance for modeling physical systems, specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a quite different, less complex and more easily comprehensible manner. Throughout the text the results are illustrated by many examples, some of them being physically motivated systems, so that the reader can appreciate how much insight is gained by means of these techniques. Various control systems applications of the techniques are characterized including:
· computation of the flow of nonlinear systems;
· computation of semi-invariants;
· computation of Lyapunov functions for stability analysis.
Symmetries and Semi-invariants in the Analysis of Nonlinear Systems will be of interest to researchers and graduate students studying control theory, particularly with respect to nonlinear systems. All the necessary background and mathematical derivations are related in detail but in a simple writing style that makes the book accessible in depth to readers having a standard knowledge of real analysis, linear algebra and systems theory.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speeds£ 2.38 shipping from Italy to United Kingdom
Destination, rates & speedsSeller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo č un articolo print on demand. Seller Inventory # c9c33c9a2cbb8c5519841bb0d15aa618
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781447162414_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Most results are derived for continuous- and discrete-time systems showing readers how to recognises when their own techniques are valid in both casesRigorous mathematical treatment in a simple style allows in-depth understanding to be easi. Seller Inventory # 4185602
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion.The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design. 352 pp. Englisch. Seller Inventory # 9781447162414
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion.The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design. Seller Inventory # 9781447162414
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 539. Seller Inventory # C9781447162414
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 352. Seller Inventory # 26356481161
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 352. Seller Inventory # 357091158
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion.The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch. Seller Inventory # 9781447162414
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 352. Seller Inventory # 18356481155
Quantity: 4 available