Items related to Machine Learning for Vision-Based Motion Analysis:...

Machine Learning for Vision-Based Motion Analysis: Theory and Techniques (Advances in Computer Vision and Pattern Recognition) - Softcover

 
9781447126072: Machine Learning for Vision-Based Motion Analysis: Theory and Techniques (Advances in Computer Vision and Pattern Recognition)

Synopsis

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.

Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.

Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.

Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.

"synopsis" may belong to another edition of this title.

From the Back Cover

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.

Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.

Topics and features:

  • Provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms
  • Examines algorithms for clustering and segmentation, and manifold learning for dynamical models
  • Describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction
  • Discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy
  • Explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data
  • Investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets

Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.

Dr. Liang Wang is a lecturer at the Department of Computer Science at the University of Bath, UK, and is also affiliated to the National Laboratory of Pattern Recognition in Beijing, China. Dr. Guoying Zhao is an adjunct professor at the Department of Electrical and Information Engineering at the University of Oulu, Finland. Dr. Li Cheng is a research scientist at the Agency for Science, Technology and Research (A*STAR), Singapore. Dr. Matti Pietikäinen is Professor of Information Technology at the Department of Electrical and Information Engineering at the University of Oulu, Finland.

"About this title" may belong to another edition of this title.

Buy Used

Condition: As New
Unread book in perfect condition...
View this item

£ 15.03 shipping from U.S.A. to United Kingdom

Destination, rates & speeds

Buy New

View this item

FREE shipping within United Kingdom

Destination, rates & speeds

Other Popular Editions of the Same Title

9780857290564: Machine Learning for Vision-Based Motion Analysis: Theory and Techniques (Advances in Computer Vision and Pattern Recognition)

Featured Edition

ISBN 10:  0857290568 ISBN 13:  9780857290564
Publisher: Springer, 2010
Hardcover

Search results for Machine Learning for Vision-Based Motion Analysis:...

Stock Image

Published by Springer, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9781447126072_new

Contact seller

Buy New

£ 139.22
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Wang, Liang|Zhao, Guoying|Cheng, Li|Pietikäinen, Matti
Published by Springer London, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a comprehensive and accessible review of vision-based motion analysisHighlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspectiveDescribes the benefits of collaboration . Seller Inventory # 4184547

Contact seller

Buy New

£ 121.93
Convert currency
Shipping: £ 21.73
From Germany to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Liang Wang
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval. 388 pp. Englisch. Seller Inventory # 9781447126072

Contact seller

Buy New

£ 143.71
Convert currency
Shipping: £ 9.56
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Wang, Liang (EDT); Zhao, Guoying (EDT); Cheng, Li (EDT); Pietikäinen, Matti (EDT)
Published by Springer, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 21686087-n

Contact seller

Buy New

£ 139.20
Convert currency
Shipping: £ 15.03
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 15 available

Add to basket

Seller Image

Liang Wang
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval. Seller Inventory # 9781447126072

Contact seller

Buy New

£ 149.21
Convert currency
Shipping: £ 12.16
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Liang Wang
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Taschenbuch
Print on Demand

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 388 pp. Englisch. Seller Inventory # 9781447126072

Contact seller

Buy New

£ 143.71
Convert currency
Shipping: £ 30.43
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Wang, Liang (EDT); Zhao, Guoying (EDT); Cheng, Li (EDT); Pietikäinen, Matti (EDT)
Published by Springer, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
Used Softcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 21686087

Contact seller

Buy Used

£ 162.16
Convert currency
Shipping: £ 15.03
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 15 available

Add to basket

Stock Image

Liang Wang
Published by Springer London Ltd, England, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Paperback

Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: new. Paperback. Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval. Based on contributions to the International Workshop on Machine Learning for Vision-Based Motion Analysis, this volume highlights the latest algorithms and systems for robust and effective vision-based motion understanding. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781447126072

Contact seller

Buy New

£ 141.25
Convert currency
Shipping: £ 37.58
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Published by Springer, 2013
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Softcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Mar2411530316610

Contact seller

Buy New

£ 138.21
Convert currency
Shipping: £ 56.38
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Wang, Liang (Edited by)/ Zhao, Guoying (Edited by)/ Cheng, Li (Edited by)/ Pietikäinen, Matti (Edited by)
Published by Springer, 2012
ISBN 10: 1447126076 ISBN 13: 9781447126072
New Paperback

Seller: Revaluation Books, Exeter, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: Brand New. 2011 edition. 386 pages. 9.25x6.10x0.92 inches. In Stock. Seller Inventory # x-1447126076

Contact seller

Buy New

£ 198.10
Convert currency
Shipping: £ 6.99
Within United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

There are 1 more copies of this book

View all search results for this book