Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.
This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:
· At the single nanoparticle level, how well do experimental and classical electrodynamics agree?
· What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?
· Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?
· Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?
· Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?
"synopsis" may belong to another edition of this title.
Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.
This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically:
· At the single nanoparticle level, how well do experimental and classical electrodynamics agree?
· What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment?
· Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this?
· Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects?
· Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?
"About this title" may belong to another edition of this title.
£ 7.68 shipping from Germany to United Kingdom
Destination, rates & speeds£ 21.58 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 216 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 10082016/12
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Hervorragend. Zustand: Hervorragend | Seiten: 216 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 10082016/1
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Prize-awarded thesis - New research in an emerging field - Interdisciplinary applications for chemistry, physics, and materials scienceInterest in structures with nanometer-length features has significantly increased as experimental techniques for . Seller Inventory # 4176557
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: At the single nanoparticle level, how well do experimental and classical electrodynamics agree What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties 216 pp. Englisch. Seller Inventory # 9781441982483
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441982483_new
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: At the single nanoparticle level, how well do experimental and classical electrodynamics agree What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties. Seller Inventory # 9781441982483
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes.This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: At the single nanoparticle level, how well do experimental and classical electrodynamics agree What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Seller Inventory # 9781441982483
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 521. Seller Inventory # C9781441982483
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 214 pages. 6.50x9.50x0.50 inches. In Stock. Seller Inventory # x-1441982485
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530297561
Quantity: Over 20 available