Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision, local high order approximation (sometimes combined with mesh subdivision), and mesh movement. The latter type of adaptive mesh method has been less well studied, both computationally and theoretically.
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. The partial differential equations considered are mainly parabolic (diffusion-dominated, rather than convection-dominated).
The extensive bibliography provides an invaluable guide to the literature in this field. Each chapter contains useful exercises. Graduate students, researchers and practitioners working in this area will benefit from this book.
Weizhang Huang is a Professor in the Department of Mathematics at the University of Kansas.
Robert D. Russell is a Professor in the Department of Mathematics at Simon Fraser University.
"synopsis" may belong to another edition of this title.
Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision, local high order approximation (sometimes combined with mesh subdivision), and mesh movement. The latter type of adaptive mesh method has been less well studied, both computationally and theoretically.
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. The partial differential equations considered are mainly parabolic (diffusion-dominated, rather than convection-dominated).
The extensive bibliography provides an invaluable guide to the literature in this field. Each chapter contains useful exercises. Graduate students, researchers and practitioners working in this area will benefit from this book.
Weizhang Huang is a Professor in the Department of Mathematics at the University of Kansas.
Robert D. Russell is a Professor in the Department of Mathematics at Simon Fraser University.
"About this title" may belong to another edition of this title.
£ 15 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 11892146-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2411530297476
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision, local high order approximation (sometimes combined with mesh subdivision), and mesh movement. The latter type of adaptive mesh method has been less well studied, both computationally and theoretically. This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. The partial differential equations considered are mainly parabolic (diffusion-dominated, rather than convection-dominated). The extensive bibliography provides an invaluable guide to the literature in this field. Each chapter contains useful exercises. Graduate students, researchers and practitioners working in this area will benefit from this book. Weizhang Huang is a Professor in the Department of Mathematics at the University of Kansas. Robert D. Russell is a Professor in the Department of Mathematics at Simon Fraser University. Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision, local high order approximation (sometimes combined with mesh subdivision), and mesh movement. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781441979155
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781441979155
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441979155_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 11892146-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book. 434 pp. Englisch. Seller Inventory # 9781441979155
Quantity: 2 available
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Hardback or Cased Book. Condition: New. Adaptive Moving Mesh Methods. Book. Seller Inventory # BBS-9781441979155
Quantity: 5 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 840. Seller Inventory # C9781441979155
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 432 pages. 9.50x6.50x1.00 inches. In Stock. Seller Inventory # x-1441979158
Quantity: 2 available