Overview and Introduction.- Part I: Preliminaries.- Linear Spectral Mixture Analysis.- Finding Endmembers in Hyperspectral Imagery.- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection.- Hyperspectral Target Detection.- Part II: Sample-wise Sequential Processes for Finding Endmembers.- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection.- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis.- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis.- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers.- Part III: Sample-Wise Progressive Processes for Finding Endmembers.- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection.- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis.- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis.- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers.- Part IV: Sample-Wise Progressive Unsupervised Target Detection.- Progressive Anomaly Detection.- Progressive Adaptive Anomaly Detection.- Progressive Window-Based Anomaly Detection.- Progressive Subpixel Target Detectio n and Classification.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want