Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.
The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.
The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.
"synopsis" may belong to another edition of this title.
The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.
The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.
The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speeds£ 21.28 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides an exact mathematical description of various mathematical formulations and numerical methods for boundary integral equations in the three-dimensional case in a unified and compact forma systematic numerical treatment of a variety of bound. Seller Inventory # 4174515
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given. 292 pp. Englisch. Seller Inventory # 9781441941602
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations. Seller Inventory # 9781441941602
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Boundary Element Methods (BEM) play an important role in modern numerical computations in the applied and engineering sciences. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Seller Inventory # 9781441941602
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 292 97 Illus. Seller Inventory # 5802578
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 292. Seller Inventory # 263093901
Quantity: 4 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 443. Seller Inventory # C9781441941602
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441941602_new
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 284 pages. 9.00x6.00x0.66 inches. In Stock. Seller Inventory # x-1441941606
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 292. Seller Inventory # 183093895
Quantity: 4 available