After a brief introduction reviewing the concepts of principal ideal domains and commutative fields, the book discusses residue classes (for example, the integers mog=dulo some number m); quadratic residues; algebraic integers (that is, objects that behave like integers in arbitrary algebraic structures), their discriminant; decomposition, norm, and classes of ideals; the ramification index; and the fundamental theorem of Abelian extensions. The theorems and definitions are carefully motivated, and the author frequently stops to explain how things fit together and what will come next. There are a great many exercises and many useful examples at a
"synopsis" may belong to another edition of this title.
From the reviews of the second edition:
"This book is a thorough self-contained introduction to algebraic number theory. ... The book is aimed at graduate students. The author made a great effort to make the subject easier to understand. The proofs are very detailed, there are plenty of examples and there are exercises at the end of almost all chapters ... . The book contains a great amount of material, more than enough for a year-long course." (Gábor Megyesi, Acta Scientiarum Mathematicarum, Vol. 69, 2003)
"There is a wealth of material in this book. The approach is very classical and global. ... the author keeps his presentation self-contained. The author has made a real effort to make the book accessible to students. Proofs are given in great detail, and there are many examples and exercises. The book would serve well as a text for a graduate course in classical algebraic number theory." (Lawrence Washington, Mathematical Reviews, Issue 2002 e)
"Ribenboims’s ‘Classical Theory of Algebraic Numbers’ is an introduction to algebraic number theory on an elementary level ... . Ribenboim’s book is a well written introduction to classical algebraic number theory ... and the perfect textbook for students who need lots of examples." (Franz Lemmermeyer, Zentralblatt MATH, Vol. 1082, 2006)
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781441928702_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The exposition of the classical theory of algebraic numbers is clear and thorough, and there isa large number of exercises as well as worked out numerical examples.A careful study of this book will provide a solid background to the learning of more recent topics. 708 pp. Englisch. Seller Inventory # 9781441928702
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning o. Seller Inventory # 4173343
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1006. Seller Inventory # C9781441928702
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Gauss created the theory of binary quadratic forms in 'Disquisitiones Arithmeticae' and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics. Seller Inventory # 9781441928702
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Gauss created the theory of binary quadratic forms in 'Disquisitiones Arithmeticae' and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 708 pp. Englisch. Seller Inventory # 9781441928702
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 708 9 Illus. Seller Inventory # 5782083
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 708 2nd Edition. Seller Inventory # 263114396
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79014419287076
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 708. Seller Inventory # 183114390
Quantity: 4 available