This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1873 Excerpt: ...two points in the curve of intersection, and the generating lines v a, v' a' will be the tangents to the curve at those points; the other special points are those to which the contour lines in each projection are the tangents, as shown in the drawing. As the figure is symmetrical with respect to the central line rsp, it will be useful also to determine the highest and lowest points in the curve. This is found by constructing a section of the two cones, made by the vertical plane rsp, and the points (c, /), in which their contour lines intersect, will give the highest and lowest points required. This section is not shown in the figure, to avoid confusion. The tangents at the points (c, &) will be horizontal. Plate XXXIII., gives a more general example of this problem, both cones being obliquely inclined to the horizontal plane. The method of finding all the principal points in the curve of interpenetration is sufficiently indicated by the construction lines in the drawing. The only difficulty that will probably be experienced both in this example and the preceding, is in finding the horizontal trace of the cone; as the special construction for determining this has been omitted to avoid confusing the figure, the method is shown separately in Plate XXXIV. The problem is the following: 67. Having given the plan of the axis of a right cone, its inclination to the horizontal plane, the height of the vertex, and the real magnitude of the vertical angle, to determine the horizontal projection of the cone and also its horizontal trace or the section made by the horizontal plane of projection. (Plate XXXIV.) Let r t be the plan of the axis of cone, i/ t its vertical projection, taking v t as ground line. Make the angles t 1/ a, t 1/ b equal to half the given vert...
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want