Rank-Based Methods for Shrinkage and Selection
A practical and hands-on guide to the theory and methodology of statistical estimation based on rank
Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students.
Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes:
"synopsis" may belong to another edition of this title.
A. K. Md. Ehsanes Saleh, PhD, is a Professor Emeritus and Distinguished Professor in the School of Mathematics and Statistics, Carleton University, Ottawa, Canada. He is Fellow of IMS, ASA and Honorary member of SSC, Canada.
Mohammad Arashi, PhD, is an Associate Professor at Ferdowsi University of Mashhad in Iran and Extraordinary Professor and C2 rated researcher at University of Pretoria, Pretoria, South Africa. He is an elected member of ISI.
Resve A. Saleh, M.Sc, PhD (Berkeley), is a Professor Emeritus in the Department of ECE at the University of British Columbia, Vancouver, Canada, and formerly with University of Illinois and Stanford University. He is the author of 4 books and Fellow of the IEEE.
Mina Norouzirad, PhD, is a post-doctoral researcher at the Center for Mathematics and Applications (CMA) of Nova University of Lisbon, Portugal.
A practical and hands-on guide to the theory and methodology of statistical estimation based on rank
Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students.
Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes:
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2317530298881
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 35527773-n
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9781119625391
Quantity: 15 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 35527773
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781119625391_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 35527773-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 35527773
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selectionMethodology for robust data science using penalized rank estimatorsTheory and methods of penalized rank dispersion for ridge, LASSO and EnetTopics include Liu regression, high-dimension, and AR(p)Novel rank-based logistic regression and neural networksProblem sets include R code to demonstrate its use in machine learning Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781119625391
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. New copy - Usually dispatched within 4 working days. 454. Seller Inventory # B9781119625391
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 454. Seller Inventory # C9781119625391
Quantity: Over 20 available