Advanced State Space Methods for Neural and Clinical Data - Hardcover

 
9781107079199: Advanced State Space Methods for Neural and Clinical Data

Synopsis

This authoritative work provides an in-depth treatment of state space methods, with a range of applications in neural and clinical data. Advanced and state-of-the-art research topics are detailed, including topics in state space analyses, maximum likelihood methods, variational Bayes, sequential Monte Carlo, Markov chain Monte Carlo, nonparametric Bayesian, and deep learning methods. Details are provided on practical applications in neural and clinical data, whether this is characterising time series data from neural spike trains recorded from the rat hippocampus, the primate motor cortex, or the human EEG, MEG or fMRI, or physiological measurements of heartbeats or blood pressures. With real-world case studies of neuroscience experiments and clinical data sets, and written by expert authors from across the field, this is an ideal resource for anyone working in neuroscience and physiological data analysis.

"synopsis" may belong to another edition of this title.

About the Author

Zhe Chen is Assistant Professor at the New York University School of Medicine, having previously worked at the RIKEN Brain Science Institute, Harvard Medical School, and Massachusetts Institute of Technology. He is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) and an editorial board member of Neural Networks. Professor Chen has received a number of awards, including the Early Career Award from the Mathematical Biosciences Institute, and has had his work funded by the US National Science Foundation.

"About this title" may belong to another edition of this title.