As multicriteria decision-making (MCDM) continues to grow and evolve, machine learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design.
Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is a comprehensive resource that bridges the gap between ML and MCDM. It offers a practical approach by demonstrating the application of ML and MCDM algorithms to real-world problems. Through case studies and examples, it showcases the effectiveness of these techniques in optimal design. The book also provides a comparative analysis of conventional MCDM algorithms and machine learning techniques, enabling readers to make informed decisions about their use in different scenarios. It also delves into emerging trends, providing insights into future directions and potential opportunities. The book covers a wide range of topics, including the definition of optimal design, MCDM algorithms, supervised and unsupervised ML techniques, deep learning techniques, and more, making it a valuable resource for professionals and researchers in various fields.
Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is designed for professionals, researchers, and practitioners in engineering, computer science, sustainability, and related fields. It is also a valuable resource for students and academics who wish to expand their knowledge of machine learning applications in multicriteria decision-making. By offering a blend of theoretical insights and practical examples, this guide aims to inspire further research and application of machine learning in multidimensional decision-making environments.
"synopsis" may belong to another edition of this title.
Tien V.T. Nguyen, a member of the IEEE, is a highly accomplished individual with an impressive educational background. He obtained a master's degree in mechanical engineering and linguistics from prestigious institutions such as Viet Nam National University Ho Chi Minh City, Bach Khoa University, and HCMC University of Social Sciences and Humanities in 2012 and 2020, respectively. Additionally, he holds a Ph.D. in industrial engineering and management from the National Kaohsiung University of Science and Technology in Taiwan.
Throughout his career, Tien has made significant contributions to his field, having published over 61 journal papers and conference papers. He has also served as a reviewer for more than 75 SCI/Scopus Journals, providing over 1010 review reports. Furthermore, he has acted as an Academic Editor for several Q1 Journals, handling over 65 scientific manuscripts.
Tien's professional experience extends beyond academia, as he has studied and worked in various countries including South Korea, Thailand, Russia, and Taiwan. Currently, he serves as a Lecturer at the Industrial University of Ho Chi Minh City in Vietnam.
His areas of expertise include machine learning (AI), compliant mechanisms optimization design, numerical computation, MCDM, and Supply chain management. Tien's research has had a significant impact on his field, as evidenced by his Scopus H-index of 17 and 646 citations as of April 2024.
Nhut T. M. Vo, a member of the IEEE, is a versatile professional with a diverse background. She received her M.Sc. degree from the National Kaohsiung University of Science and Technology (NKUST), Taiwan, where she is currently pursuing a Ph.D. degree in industrial engineering and management. Her professional journey has taken her through various sectors, including banking, the jewelry industry, information technology, and e-commerce, enriching her understanding of different industries. She is also a self-publishing author with many books about lean management and other fields. Her research interests span various topics, including the Internet of Things, blockchain, cloud computing, machine learning (AI), green energy, logistics, e-commerce, and numerical computation.
Van Chinh Truong is not just a Faculty of Mechanical Engineering at the Industrial University of Ho Chi Minh City, Vietnam, but a dedicated educator. Dr. Truong has also been actively involved in research and academia, having participated in several research projects. He has successfully developed and implemented various technologies, significantly contributing to the industry. But his true passion lies in inspiring and educating future generations of engineers, a commitment that shines through his work and contributions to the field of mechanical engineering.
Van-Thu Nguyen is a lecturer at Ho Chi Minh University of Technology and Education in Vietnam. He has a Ph.D. from the National Kaohsiung University of Science and Technology, Taiwan, and has published over 50 SCIE journal papers. His areas of expertise include manufacturing material science and mechanical processing. He is a highly respected researcher and educator in his field.
"About this title" may belong to another edition of this title.
£ 1.97 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 47912164-n
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26401957969
Quantity: 4 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. As multicriteria decision-making (MCDM) continues to grow and evolve, machine learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design. Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is a comprehensive resource that bridges the gap between ML and MCDM. It offers a practical approach by demonstrating the application of ML and MCDM algorithms to real-world problems. Through case studies and examples, it showcases the effectiveness of these techniques in optimal design. The book also provides a comparative analysis of conventional MCDM algorithms and machine learning techniques, enabling readers to make informed decisions about their use in different scenarios. It also delves into emerging trends, providing insights into future directions and potential opportunities. The book covers a wide range of topics, including the definition of optimal design, MCDM algorithms, supervised and unsupervised ML techniques, deep learning techniques, and more, making it a valuable resource for professionals and researchers in various fields. Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is designed for professionals, researchers, and practitioners in engineering, computer science, sustainability, and related fields. It is also a valuable resource for students and academics who wish to expand their knowledge of machine learning applications in multicriteria decision-making. By offering a blend of theoretical insights and practical examples, this guide aims to inspire further research and application of machine learning in multidimensional decision-making environments. As Multi-Criteria Decision-Making (MCDM) continues to grow and evolve, Machine Learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781032635088
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 394451854
Quantity: 3 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. As multicriteria decision-making (MCDM) continues to grow and evolve, machine learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design. Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is a comprehensive resource that bridges the gap between ML and MCDM. It offers a practical approach by demonstrating the application of ML and MCDM algorithms to real-world problems. Through case studies and examples, it showcases the effectiveness of these techniques in optimal design. The book also provides a comparative analysis of conventional MCDM algorithms and machine learning techniques, enabling readers to make informed decisions about their use in different scenarios. It also delves into emerging trends, providing insights into future directions and potential opportunities. The book covers a wide range of topics, including the definition of optimal design, MCDM algorithms, supervised and unsupervised ML techniques, deep learning techniques, and more, making it a valuable resource for professionals and researchers in various fields. Multi-Criteria Decision-Making and Optimum Design with Machine Learning: A Practical Guide is designed for professionals, researchers, and practitioners in engineering, computer science, sustainability, and related fields. It is also a valuable resource for students and academics who wish to expand their knowledge of machine learning applications in multicriteria decision-making. By offering a blend of theoretical insights and practical examples, this guide aims to inspire further research and application of machine learning in multidimensional decision-making environments. As Multi-Criteria Decision-Making (MCDM) continues to grow and evolve, Machine Learning (ML) techniques have become increasingly important in finding efficient and effective solutions to complex problems. This book is intended to guide researchers, practitioners, and students interested in the intersection of ML and MCDM for optimal design. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9781032635088
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 47912164
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781032635088
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 47912164-n
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18401957979
Quantity: 4 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. New copy - Usually dispatched within 4 working days. 825. Seller Inventory # B9781032635088
Quantity: 1 available