Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization.
"synopsis" may belong to another edition of this title.
"...very clearly written and is quite readable. The authors are clearly leading experts in the field...strongly recommended to readers interested in the subject."--The Aeronautical Journal, February 2015
"Aerospace engineers Grauer...and Hubbard...describe an ornithopter they designed, built, and tested. An ornithopter flies by flapping wings like a bird. They cover ornithopter test platform characterizations, rigid multi-body vehicle dynamics, system identification of aerodynamic models, and simulation results."--ProtoView.com, February 2014
Jared A. Grauer is a research aerospace engineer with the National Aeronautics and Space Administration at Langley Research Center. Prior to this he earned a PhD from the University of Maryland in Aerospace Engineering. His research is in system identification, feedback control, and unmanned air vehicle systems.
"About this title" may belong to another edition of this title.
£ 15.49 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Chiron Media, Wallingford, United Kingdom
Hardcover. Condition: New. Seller Inventory # 6666-ELS-9780857094667
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 138 pages. 9.25x6.25x0.75 inches. In Stock. Seller Inventory # __0857094661
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 160. Seller Inventory # 49553699
Quantity: 3 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 160. Seller Inventory # 2642180348
Quantity: 3 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 160. Seller Inventory # 1842180342
Quantity: 3 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization. Englisch. Seller Inventory # 9780857094667
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization. Seller Inventory # 9780857094667
Quantity: 2 available