Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards.The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry.
"synopsis" may belong to another edition of this title.
£ 12.93 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Studibuch, Stuttgart, Germany
paperback. Condition: Gut. 176 Seiten; 9780821839195.3 Gewicht in Gramm: 500. Seller Inventory # 965391
Quantity: 1 available
Seller: Yes Books, Portland, ME, U.S.A.
Soft cover. Condition: Good. No Jacket. Very light moisture damage on first ten pages. Cover worn around edges. Still a good copy. Clean and unmarked. 176 pages. Seller Inventory # 017607
Quantity: 1 available
Seller: Rarewaves.com UK, London, United Kingdom
Paperback. Condition: New. illustrated Edition. Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards.The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry. Seller Inventory # LU-9780821839195
Quantity: 3 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Describes billiards and their relation with differential geometry, classical mechanics, and geometrical optics. This book covers such topics as variational principles of billiard motion, and symplectic geometry of rays of light and integral geometry. It is suitable for students interested in ergodic theory and geometry. Series: Student Mathematical Library. Num Pages: 176 pages, Illustrations. BIC Classification: PBM; PBW; WSJZ. Category: (P) Professional & Vocational. Weight in Grams: 242. . 2005. Paperback. . . . . Seller Inventory # V9780821839195
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. illustrated edition. 176 pages. 8.30x5.50x0.40 inches. In Stock. Seller Inventory # __0821839195
Quantity: 1 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. Describes billiards and their relation with differential geometry, classical mechanics, and geometrical optics. This book covers such topics as variational principles of billiard motion, and symplectic geometry of rays of light and integral geometry. It is suitable for students interested in ergodic theory and geometry. Series: Student Mathematical Library. Num Pages: 176 pages, Illustrations. BIC Classification: PBM; PBW; WSJZ. Category: (P) Professional & Vocational. Weight in Grams: 242. . 2005. Paperback. . . . . Books ship from the US and Ireland. Seller Inventory # V9780821839195
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. xi + 176 Illus. Seller Inventory # 5474944
Quantity: 3 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. 272. Seller Inventory # B9780821839195
Quantity: 6 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. xi + 176 Index. Seller Inventory # 262372959
Quantity: 3 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. illustrated Edition. Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards.The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry. Seller Inventory # LU-9780821839195
Quantity: 3 available