The Quadratic Assignment Problem Presents a general overview of the different aspects of the QAP, as well as outlining several research directions which seem to be promising. This book gives a presentation of various results scattered in the literature, such as: bounding techniques and exact solution methods, linearisations, heuristic approaches and computational complexity.
"synopsis" may belong to another edition of this title.
`... will be primarily of interest to researchers in the field of mathematics for operational research. Practitioners wanting to read the book, however, will find all the necessary references in order to understand the mathematical terminology. The book can also be recommended to young researchers and to PhD students seeking challenging problems.'
Journal of the Operational Research Society, 50:5 (1999)
The quadratic assignment problem (QAP) is a classical combinatorial optimization problem with numerous applications in facility location, scheduling, manufacturing, VLSI design, statistical data analysis, etc. The QAP is an extremely hard problem from both theoretical and practical points of view: The QAP is NP-hard to solve to optimality and to approximate within a constant approximation ratio, and QAP instances of size larger than 22 are still considered intractable. Hence, the QAP is in effect a problem that has yet to be solved. This volume presents a general overview of the most studied aspects of the QAP, as well as outlining a number of research directions which currently seem to be promising. The book gives a systematic presentation of various results scattered in the literature, such as: bounding techniques and exact solution methods, linearisations, heuristic approaches and computational complexity.Some more recent research directions discussed in detail in the book are the asymptotic behaviour of the QAP and restricted versions of the problem: in particular, polynomially solvable and provably hard cases of the QAP.Audience: This volume will be of interest to researchers and students interested in the quadratic assignment problem and to practitioners who face the QAP and wish to better understand this problem in its inherent complexity.
"About this title" may belong to another edition of this title.
£ 37.89 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. | Seiten: 308 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 3014761/2
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190182723
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780792348788_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and pract. Seller Inventory # 5968322
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of re- life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known c- binatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits. Seller Inventory # 9780792348788
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of re- life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known c- binatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits. 308 pp. Englisch. Seller Inventory # 9780792348788
Quantity: 2 available