Quaternions and Cayley Numbers: Algebra and Applications: 403 (Mathematics and Its Applications, 403) - Hardcover

Ward, J.P.

 
9780792345138: Quaternions and Cayley Numbers: Algebra and Applications: 403 (Mathematics and Its Applications, 403)

Synopsis

In essence, this text is written as a challenge to others, to discover significant uses for Cayley number algebra in physics. I freely admit that though the reading of some sections would benefit from previous experience of certain topics in physics - particularly relativity and electromagnetism - generally the mathematics is not sophisticated. In fact, the mathematically sophisticated reader, may well find that in many places, the rather deliberate progress too slow for their liking. This text had its origin in a 90-minute lecture on complex numbers given by the author to prospective university students in 1994. In my attempt to develop a novel approach to the subject matter I looked at complex numbers from an entirely geometric perspective and, no doubt in line with innumerable other mathematicians, re-traced steps first taken by Hamilton and others in the early years of the nineteenth century. I even enquired into the possibility of using an alternative multiplication rule for complex numbers (in which argzlz2 = argzl- argz2) other than the one which is normally accepted (argzlz2 = argzl + argz2). Of course, my alternative was rejected because it didn't lead to a 'product' which had properties that we now accept as fundamental (i. e.

"synopsis" may belong to another edition of this title.

Synopsis

This monograph is an accessible account of the normed algebras over the real field, particularly the quaternions and the Cayley numbers. The application of quaternions to spherical geometry and to mechanics is considered and the relation between quaternions and rotations in 3- and 4-dimensional Euclidean space is fully developed. The algebra of complexified quaternions is described and applied to electromagnetism and to special relativity. By looking at a 3-dimensional complex space we explore the use of a quaternion formalism to the Lorentz transformation and we examine the classification of electromagnetic and Weyl tensors. In the final chapter, extensions of quaternion algebra to the alternative non-associative algebra of Cayley numbers are investigated. The standard Cayley number identities are derived and their use in the analysis of 7- and 8-dimensional rotations is studied. Appendices on Clifford algebras and on the use of dynamic computation in Cayley algebra are included.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9789401064347: Quaternions and Cayley Numbers: Algebra and Applications: 403 (Mathematics and Its Applications, 403)

Featured Edition

ISBN 10:  9401064342 ISBN 13:  9789401064347
Publisher: Springer, 2012
Softcover