In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra.
"synopsis" may belong to another edition of this title.
This volume presents the first detailed introduction to the theory of matrix variate elliptically contoured distributions. The book comprises eight chapters and an up-to-date bibliography. Chapter 1 summarises some results of matrix algebra. Chapter 2 deals with the basic properties of matrix variate elliptically contoured distributions, such as the probability density function and expected values. It also presents one of the most important tools of the theory of elliptical distributions, the stochastic representation. The probability density function and expected values are investigated in detail in Chapter 3. Chapter 4 focuses on elliptically contoured distributions that can be represented as mixtures of normal distributions. The distributions of functions of random matrices with elliptically contoured distributions are discussed in Chapter 5, with special attention being paid to quadratic forms. Characterization results are given in Chapter 6. Chapters 7-9 are devoted to statistical inference. For researchers and graduate students in statistics and related fields whose interests involve multivariate statistical analysis.
"About this title" may belong to another edition of this title.
£ 32.44 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780792321156_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra. 344 pp. Englisch. Seller Inventory # 9780792321156
Quantity: 2 available
Seller: J. HOOD, BOOKSELLERS, ABAA/ILAB, Baldwin City, KS, U.S.A.
Hardcover. 327pp. As new, clean, tight & bright condition without dust jacket as published. Seller Inventory # 208379
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra. Seller Inventory # 9780792321156
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 689. Seller Inventory # C9780792321156
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 344 pp. Englisch. Seller Inventory # 9780792321156
Quantity: 2 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz. Seller Inventory # 5966719
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190181195
Quantity: Over 20 available