Line graphs have the property that their least eigenvalue is greater than or equal to –2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
"synopsis" may belong to another edition of this title.
'... a wealth of detail ... this class can now claim to be the best understood corner of graph theory, and this book will be the standard guide.' Bulletin of the London Mathematical Society
This work discusses the three major techniques for the study of line graphs and generalized line graphs, namely 'forbidden subgraphs', 'root systems' and 'star complements', and it aims to bring together all the principal results of this area. An important resource for all researchers with an interest in algebraic graph theory.
"About this title" may belong to another edition of this title.
£ 21.62 shipping from Germany to United Kingdom
Destination, rates & speeds£ 14.81 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Antiquariat Fluck, Berlin, Germany
1. Original-kartoniert; 8°; xi (i) 298 (2) Seiten. Sehr gutes Exemplar. Sprache: Englisch London Mathematical Society Lecture Note Series ; 314. 460 gr. Seller Inventory # 51683
Quantity: 1 available
Seller: Book Bear, West Brookfield, MA, U.S.A.
Paperback. Condition: Acceptable to Good. 298 pp. Tightly bound. Spine not compromised. Text is free of markings. No ownership markings. PLEASE NOTE: There is a bump to the top edge of the back cover and top edge of the last few pages in the book. There is also a light bump at the heel of the spine. Seller Inventory # 030088
Quantity: 1 available
Seller: Labyrinth Books, Princeton, NJ, U.S.A.
Condition: New. Seller Inventory # 215124
Quantity: 1 available
Seller: harvardyard, Northfield, MN, U.S.A.
Paperback. Condition: Very Good. NO HIGHLIGHTING OR UNDERLINING, pages are tight, bright and unmarked, binding is sound, cover is firmly attached. Clean, no tears. Crease to back cover. Seller Inventory # 12-20-21-NA-73am
Quantity: 1 available
Seller: Book Bear, West Brookfield, MA, U.S.A.
Paperback. Condition: Good to Very Good. 298 pp. Tightly bound. Spine not compromised. Text is free of markings. No ownership markings. Seller Inventory # 030087
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9780521836630
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780521836630_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 446. Seller Inventory # C9780521836630
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. Line graphs have the property that their least eigenvalue is greater than, or equal to, -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. It will be an important resource for all researchers with an interest in algebraic graph theory. Line graphs have the property that their least eigenvalue is greater than, or equal to, -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. It will be an important resource for all researchers with an interest in algebraic graph theory. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780521836630
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 310 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand. Seller Inventory # __0521836638
Quantity: 1 available