Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.
"synopsis" may belong to another edition of this title.
Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. In this book, originally published in 2000, leading experts provide the necessary background to understanding the model theory and mathematics behind these applications.
Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker.
It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis)."About this title" may belong to another edition of this title.
£ 18.58 shipping from Canada to United Kingdom
Destination, rates & speedsSeller: Attic Books (ABAC, ILAB), London, ON, Canada
Hardcover. Condition: ex library-very good. Mathematical Sciences Research Institute Publications 39. vii, 227 p. 24 cm. Ex library with labels on spine and front cover, ink stamps on top edge and title. A little soiling to top edge near spine. Seller Inventory # 145748
Quantity: 1 available
Seller: StainesBook, Weybridge, SURRE, United Kingdom
Seller Inventory # SpeedList-SLUSA121
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780521780681_new
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780521780681
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 227 pages. 9.25x6.00x0.75 inches. In Stock. This item is printed on demand. Seller Inventory # __0521780683
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9780521780681
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA75805217806835
Quantity: 1 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780521780681
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. In this book, originally published in 2000, leading experts provide the necessary background to understanding the model theory and mathema. Seller Inventory # 446946893
Quantity: Over 20 available
Seller: Antiquariat Bernhardt, Kassel, Germany
Karton. Condition: Sehr gut. Zust: Gutes Exemplar. 227 Seiten, mit Abbildungen, Englisch 472g. Seller Inventory # 494270
Quantity: 1 available