The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory.
"synopsis" may belong to another edition of this title.
New, with very slight shelf wear to cover, 'damaged' stamped inside, reflected in price, otherwise outstanding. A thorough, vigorous, definitive treatment of the subject, packed with exercises, make this an essential text for any post graduate level mathematician. A superb resource. (sci)
'The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.' Proceedings of the Edinburgh Mathematical Society
'This is a highly specialized monograph which is very clearly written and made as accessible for the reader as possible ... It is absolutely indispensable for any specialist in the field.' European Mathematical Society
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580240867
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780521055192
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780521055192_new
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 1st edition. 379 pages. 8.82x5.98x1.10 inches. In Stock. This item is printed on demand. Seller Inventory # __0521055199
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9780521055192
Quantity: 10 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 590. Seller Inventory # C9780521055192
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780521055192
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book makes the topology of non-compact spaces accessible to both geometric and algebraic topologists, and algebraists. Recent developments are explained, and tools for further research are provided. In short, this book provides a systematic exposition o. Seller Inventory # 446923374
Seller: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condition: new. Paperback. The ends of a topological space are the directions in which it becomes non-compact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behaviour at infinity of a non-compact space. The second part studies tame ends in topology. Tame ends are shown to have a uniform structure, with a periodic shift map. Approximate fibrations are used to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. The ends of a topological space are the directions in which it becomes noncompact by tending to infinity. The tame ends of manifolds are particularly interesting, both for their own sake, and for their use in the classification of high-dimensional compact manifolds. The book is devoted to the related theory and practice of ends, dealing with manifolds and CW complexes in topology and chain complexes in algebra. The first part develops a homotopy model of the behavior at infinity of a noncompact space. The second part studies tame ends in topology. The authors show tame ends to have a uniform structure, with a periodic shift map. They use approximate fibrations to prove that tame manifold ends are the infinite cyclic covers of compact manifolds. The third part translates these topological considerations into an appropriate algebraic context, relating tameness to homological properties and algebraic K- and L-theory. This book will appeal to researchers in topology and geometry. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780521055192
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA77305210551996