This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
"synopsis" may belong to another edition of this title.
A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas.
More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course."About this title" may belong to another edition of this title.
£ 12.89 shipping from Germany to United Kingdom
Destination, rates & speedsFREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-240658
Quantity: 2 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-240658
Quantity: 2 available
Seller: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Germany
Hardcover. 2000. XII, 318 S. ; 24 cm Like new! 9780387984674 Sprache: Englisch Gewicht in Gramm: 608. Seller Inventory # 200192
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 4973285-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780387984674_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while th. Seller Inventory # 5913317
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 4973285-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 4973285
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics. 336 pp. Englisch. Seller Inventory # 9780387984674
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas. More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course. Seller Inventory # 9780387984674
Quantity: 1 available