Incomplete-data problems arise naturally in many instances of statistical practice. One class of incomplete-data problems, which is relatively not well understood by statisticians, is that of merging micro-data files. Many Federal agencies use the methodology of file-merging to create comprehensive files from multiple but incomplete sources of data. The main objective of this endeavor is to perform statistical analyses on the synthetic data set generated by file merging. In general, these analyses cannot be performed by analyzing the incomplete data sets separately. The validity and the efficacy of the file-merging methodology can be assessed by means of statistical models underlying the mechanisms which may generate the incomplete files. However, a completely satisfactory and unified theory of file-merging has not yet been developed This monograph is only a minor attempt to fill this void for unifying known models. Here, we review the optimal properties of some known matching strategies and derive new results thereof. However, a great number of unsolved problems still need the attention of very many researchers. One main problem still to be resolved is the development of appropriate inference methodology from merged files if one insists on using file merging methodology. If this monograph succeeds in attracting just a few more mathematical statisticians to work on this class of problems, then we will feel that our efforts have been successful.
"synopsis" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780387969701_new
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 303. Seller Inventory # C9780387969701
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Incomplete-data problems arise naturally in many instances of statistical practice. One class of incomplete-data problems, which is relatively not well understood by statisticians, is that of merging micro-data files. Many Federal agencies use the methodology of file-merging to create comprehensive files from multiple but incomplete sources of data. The main objective of this endeavor is to perform statistical analyses on the synthetic data set generated by file merging. In general, these analyses cannot be performed by analyzing the incomplete data sets separately. The validity and the efficacy of the file-merging methodology can be assessed by means of statistical models underlying the mechanisms which may generate the incomplete files. However, a completely satisfactory and unified theory of file-merging has not yet been developed This monograph is only a minor attempt to fill this void for unifying known models. Here, we review the optimal properties of some known matching strategies and derive new results thereof. However, a great number of unsolved problems still need the attention of very many researchers. One main problem still to be resolved is the development of appropriate inference methodology from merged files if one insists on using file merging methodology. If this monograph succeeds in attracting just a few more mathematical statisticians to work on this class of problems, then we will feel that our efforts have been successful. Seller Inventory # 9780387969701
Quantity: 1 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Incomplete-data problems arise naturally in many instances of statistical practice. One class of incomplete-data problems, which is relatively not well understood by statisticians, is that of merging micro-data files. Many Federal agencies use the methodolo. Seller Inventory # 5912877
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 164 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5847675
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 164. Seller Inventory # 263048868
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 160 pages. 9.75x6.75x0.50 inches. In Stock. Seller Inventory # x-0387969705
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 164. Seller Inventory # 183048878
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Incomplete-data problems arise naturally in many instances of statistical practice. One class of incomplete-data problems, which is relatively not well understood by statisticians, is that of merging micro-data files. Many Federal agencies use the methodology of file-merging to create comprehensive files from multiple but incomplete sources of data. The main objective of this endeavor is to perform statistical analyses on the synthetic data set generated by file merging. In general, these analyses cannot be performed by analyzing the incomplete data sets separately. The validity and the efficacy of the file-merging methodology can be assessed by means of statistical models underlying the mechanisms which may generate the incomplete files. However, a completely satisfactory and unified theory of file-merging has not yet been developed This monograph is only a minor attempt to fill this void for unifying known models. Here, we review the optimal properties of some known matching strategies and derive new results thereof. However, a great number of unsolved problems still need the attention of very many researchers. One main problem still to be resolved is the development of appropriate inference methodology from merged files if one insists on using file merging methodology. If this monograph succeeds in attracting just a few more mathematical statisticians to work on this class of problems, then we will feel that our efforts have been successful.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Seller Inventory # 9780387969701
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA77303879697056
Quantity: 1 available