Items related to Palm Probabilities and Stationary Queues: 41 (Lecture...

Palm Probabilities and Stationary Queues: 41 (Lecture Notes in Statistics, 41) - Softcover

 
9780387965147: Palm Probabilities and Stationary Queues: 41 (Lecture Notes in Statistics, 41)

Synopsis

Part 1 is devoted to a detailed review of the basic results concerning Palm probabilities and useful to Queueing Theory. Part 2 features the queueing formulae of all kinds, the existence of stationary states, and the insensitivity theory.

"synopsis" may belong to another edition of this title.

Buy Used

Condition: Fine
First edition, first printing,...
View this item

£ 13.33 shipping from U.S.A. to United Kingdom

Destination, rates & speeds

Other Popular Editions of the Same Title

9783540965145: Palm Probabilities and Stationary Que

Featured Edition

ISBN 10:  3540965149 ISBN 13:  9783540965145
Publisher: Springer-Verlag Berlin and Heide...
Softcover

Search results for Palm Probabilities and Stationary Queues: 41 (Lecture...

Stock Image

Baccelli, Francois, & Pierre Bremaud
Published by Springer-Verlag, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
Used Softcover

Seller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Fine. First edition, first printing, 106 pp., softcover, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1268357

Contact seller

Buy Used

£ 31.81
Convert currency
Shipping: £ 13.33
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

F. Baccelli Pierre Bremaud Francois Baccelli
Published by Springer, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
Used Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: Used. pp. 120. Seller Inventory # 263871789

Contact seller

Buy Used

£ 81.75
Convert currency
Shipping: £ 6.66
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Baccelli F. Bremaud Pierre Baccelli Francois
Published by Springer, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
Used Softcover

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Used. pp. 120 Illus. Seller Inventory # 5024754

Contact seller

Buy Used

£ 85.36
Convert currency
Shipping: £ 3.35
Within United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Baccelli, Francois; Bremaud, Pierre
Published by Springer, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Softcover

Seller: Ria Christie Collections, Uxbridge, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. In. Seller Inventory # ria9780387965147_new

Contact seller

Buy New

£ 96.32
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Stock Image

Baccelli F. Bremaud Pierre Baccelli Francois
Published by Springer, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
Used Softcover

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Used. pp. 120. Seller Inventory # 183871783

Contact seller

Buy Used

£ 90.69
Convert currency
Shipping: £ 6.87
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Francois Baccelli|Pierre Bremaud
Published by Springer New York, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two proper. Seller Inventory # 5912760

Contact seller

Buy New

£ 82.19
Convert currency
Shipping: £ 21.61
From Germany to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Pierre Bremaud
Published by Springer New York Apr 1987, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems. 120 pp. Englisch. Seller Inventory # 9780387965147

Contact seller

Buy New

£ 100.06
Convert currency
Shipping: £ 9.51
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Pierre Bremaud
Published by Springer New York, Springer US, 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems. Seller Inventory # 9780387965147

Contact seller

Buy New

£ 100.44
Convert currency
Shipping: £ 12.10
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Francois Baccelli
Published by Springer-Verlag New York Inc., 1987
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Paperback / softback
Print on Demand

Seller: THE SAINT BOOKSTORE, Southport, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 235. Seller Inventory # C9780387965147

Contact seller

Buy New

£ 114.56
Convert currency
Shipping: FREE
Within United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Pierre Bremaud
ISBN 10: 0387965149 ISBN 13: 9780387965147
New Taschenbuch
Print on Demand

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. Seller Inventory # 9780387965147

Contact seller

Buy New

£ 95.29
Convert currency
Shipping: £ 30.27
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

There are 2 more copies of this book

View all search results for this book